1.feladat. Egy nyugalomban lévő m=3 kg tömegű, r=20 cm sugarú gömböt a súlypontjában (középpontjában) I=0,1 kgm/s impulzus éri t=0,1 ms idő alatt. Az.

Slides:



Advertisements
Hasonló előadás
11. évfolyam Rezgések és hullámok
Advertisements

Munka és energia.
Az anyagi pont dinamikája A merev testek mechanikája
VÁLTOZÓ SEBESSÉGŰ ÜZEM
Dr. Angyal István Hidrodinamika Rendszerek T.
Mozgások Emlékeztető Ha a mozgás egyenes vonalú egyenletes, akkor a  F = 0 v = állandó a = 0 A mozgó test megtartja mozgásállapotát,
Egymáson gördülő kemény golyók
DINAMIKAI ALAPFOGALMAK
Newton törvényei.
VÁLTOZÓ SEBESSÉGŰ ÜZEM
Rögvest kezdünk MÁMI_05.
Pontrendszerek mechanikája
HIDRAULIKA Hidrosztatika.
Mérnöki Fizika II előadás
TÖMEGPONT DINAMIKÁJA KÖRMOZGÁS NEWTON TÖRVÉNYEK ENERGIAVISZONYOK
Műszaki és környezeti áramlástan I.
TÖMEGPONT DINAMIKÁJA KÖRMOZGÁS NEWTON TÖRVÉNYEK ENERGIAVISZONYOK
1. Feladat Két gyerek ül egy 4,5m hosszú súlytalan mérleghinta két végén. Határozzuk meg azt az alátámasztási pontot, mely a hinta egyensúlyát biztosítja,
1 Szimmetriával rendelkező mechanikai rendszerek Horváth Ákos ELTE Atomfizikai Tanszék Október 18.
TÖMEGPONT DINAMIKÁJA KÖRMOZGÁS NEWTON TÖRVÉNYEK ENERGIAVISZONYOK
AZ ERŐ HATÁSÁRA AZ ERŐ HATÁSÁRA
HATÁSFOK-SÚRLÓDÁS-EGYENLETES SEBESSÉGŰ ÜZEM
A PONTSZERŰ ÉS KITERJED TESTEK MOZGÁSA
Dinamika.
Összefoglalás Dinamika.
I. Törvények.
A test mozgási energiája
11. évfolyam Rezgések és hullámok
Paradoxon perdületre TÉTEL: Zárt rendszer perdülete állandó. A Fizikai Szemle júliusi számában jelent meg Radnai Gyula és Tichy Géza hasonló című.
A dinamika alapjai III. fejezet
Gondolkozzunk és számoljunk!
Az erő.
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
A perdület megjelenése mindennapjainkban
A tehetetlenségi nyomaték
A dinamika alapjai - Összefoglalás
Munka.
A forgómozgás és a haladó mozgás dinamikája
Készítette: Kiss István
Merev test egyensúlyának vizsgálata
Pontszerű test – kiterjedt test
CENTRIFUGÁLIS ERŐ.
A legismertebb erőfajták
Az energia.
Ütközés detektálás Ács Zsombor.
AZ ERŐ HATÁSÁRA AZ ERŐ HATÁSÁRA
Energia, munka, teljesítmény
A forgómozgás dinamikája
Forgatónyomaték.
A forgómozgás és a haladómozgás dinamikája
Munka, energia teljesítmény.
A fizikában minden olyan változást, amely időben valamilyen ismétlődést mutat, rezgésnek nevezünk. Ha a csavarrugóra felfüggesztett testet, a rugó hossztengelyének.
Energia: Egy test vagy mező állapotváltoztató képességének mértéke. Egy testnek annyi energiája van, amennyi munkát képes végezni egy másik testen,
AZ ERŐ HATÁSÁRA -mozgásállapot-változás -alakváltozás -forgás TÖRTÉNHET. AZ ERŐ HATÁSÁRA Készítette: Farkas Andor.
Rezgések Műszaki fizika alapjai Dr. Giczi Ferenc
Munka, energia teljesítmény.
Newton II. törvényének alkalmazása F=m*a
A gömb.
PERDÜLET NAGY NORBERT I₂.
Hogyan mozog a föld közelében, nem túl nagy magasságban elejtett test?
Az impulzus tétel alkalmazása (megoldási módszer)
A tehetetlenségi nyomaték
Munka Egyszerűbben: az erő (vektor!) és az elmozdulás (vektor!) skalárszorzata (matematika)
11. évfolyam Rezgések és hullámok
AZ ERŐ FAJTÁI.
Kés a vízben Egy lemezélet képzelünk el, amely a sugár egy részét leválasztja. Ennek következtében a többi folyadékrész pályája elhajlik. Adott a belépő.
Fizikai értelemben akkor történik munkavégzés, ha egy testre erő hat, és ennek következtében a test az erő irányába elmozdul. Pl.: egy testet függőleges.
Az erő fajtái Aszerint, hogy mi fejti ki az erőhatást, beszélhetünk:
Előadás másolata:

Merev test dinamikája, kényszermozgások, ütközés, rugómozgás, hullámok.

1.feladat. Egy nyugalomban lévő m=3 kg tömegű, r=20 cm sugarú gömböt a súlypontjában (középpontjában) I=0,1 kgm/s impulzus éri t=0,1 ms idő alatt. Az erőlökés hatására a gömb súrlódásmentesen kezd gurulni. A gömb tehetetlenségi nyomatéka a súlypontján átmenő tengelyre =2/5 mr2. Határozza meg a.) mekkora szögsebességgel fog a gömb forgástengelye körül forogni, b.) mekkora a testre ható forgató nyomaték? Adott: Kérdés: m= 3 kg ω= ? r=20 cm= 0,2 m M= ? I= 0,1 kgm/s t= 0,1 ms Megoldás:

2. Feladat Merev test tömege m= 4kg. A súlypontjában I= 1kgm/s impulzus éri t= 0,2 ms alatt. Mekkora x= 1,5m távolságban lévő tengely körül a tehetetlenségi nyomaték, az impulzus nyomaték és a szögsebesség és a mozgási energia, ha súlypontban ható tehetetlenségi nyomaték 5,5 kgm2 ? Adott: Kérdés: m= 4 kg o(r=2m)=? kgm2 I= 1 kgm/s ω= ? 1/s x= r= 1,5m M= ? Nm t= 0,2 ms s= 5,5 kg.m2 Megoldás:

3.Feladat Határozza meg a mozgási energiáját annak a vízszintes helyzetű merev testnek, melynek súlytalannak tekinthető 5 m hosszú karjának végén 10 kg és 15 kg tömegek vannak és a rúd közepén átmenő tengely körül 5,6 rad/s szögsebességgel forog. Mekkora lesz a szögsebessége a merev testnek, ha a két tömeg szimmetriáját megtartva 2,5 m-re közelit egymáshoz? Megoldás a.) b.)

4.feladat Egy jobbról jövő m1 =2.5 kg tömegű és v1 =4 m/s sebességű golyóval ütközik egy balról jövő m2 =5 kg tömegű és v2 =2 m/s sebességű golyó. Tökéletesen rugalmatlan ütközés után mennyi lesz a közös sebesség. 5.Felada Egy m1 =1 kg tömegű v1 =2 m/s sebességű golyót utolér egy m2 =2 kg tömegű v2 =3 m/s sebességű golyó és centrálisan ütköznek. Határozzuk meg a golyók rugalmas ütközés utáni sebességét!

6. Feladat Az ábrán látható módon, a 30o hajlásszögű lejtőn, a nyugalomból induló 5 kg tömegű test 0,2 súrlódási tényezővel mozgatható. A testre az egyik oldalról a lejtővel párhuzamos k= 80 N/m rugóállandójú rugó, a másik oldalról a lejtővel párhuzamos lefelé ható Fk= 20 N kötélerő hat. Abban a pillanatban, amikor a test az eredeti helyzetéből 15 cm-rel mozdul el a lejtőn, határozza meg a) mekkora erő hat a tömegre, b) mekkora lesz a tömeg sebessége Induláskor lefelé mozdul el. Elmozduláskor az erők

az energiaegyensúlyi állapotból a sebesség: