Illeszkedési mátrix Villamosságtani szempontból legfontosabb mátrixreprezentáció. Legyen G egy irányított gráf, n ponton e éllel. Az n x e –es B(G) mátrixot.

Slides:



Advertisements
Hasonló előadás
Lineáris egyenletrendszerek
Advertisements

Egy szélsőérték feladat és következményei
A Floyd-Warshall algoritmus
Készítette: Nagy Mihály tanár Perecsen, 2006.
Lineáris egyenletrendszerek megoldása Gauss elimináció, Cramer-szabály Dr. Kovács Sándor DE GVK Gazdaságelemzési és Statiszikai Tanszék.
Készítette: Kosztyán Zsolt Tibor
KÉSZÍTETTE: Takács Sándor
Készítette: Szinai Adrienn
GRÁFELMÉLET Alapfogalmak 2..
Műveletek mátrixokkal
Matematika II. 3. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Matematika II. 4. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Dualitás.
Vektormező szinguláris pontjainak indexe
Illés Tibor – Hálózati folyamok
Egy f  R[x] polinom cS -beli helyettesítési értéke
Csoport részcsoport invariáns faktorcsoport részcsoport
Gyűrűk Definíció. Az (R, +, ·) algebrai struktúra gyűrű, ha + és · R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ·) félcsoport, és III.
4. VÉGES HALMAZOK 4.1 Alaptulajdonságok
Egy kis lineáris algebra
Algebra a matematika egy ága
Bizonyítások Harmath Zsolt.
Szállítási probléma - fogalmak
Papp Róbert, Blaskovics Viktor, Hantos Norbert
Van-e Euler vonal az alábbi gráfban?
OPERÁCIÓKUTATÁS Kalmár János, 2011 Tartalom Több lineáris célfüggvényes LP Tiszta egészértékű LP.
OPERÁCIÓKUTATÁS Kalmár János, 2012 Tartalom A nulla-egy LP megoldása Hátizsák feladat.
Lineáris algebra Mátrixok, determinánsok, lineáris egyenletrendszerek
1. Univerzális nyelő Csúcsmátrixos ábrázolás esetén a legtöbb gráfalgoritmus futási ideje O(n2) azonban van kivétel. Egy irányított gráf egy csúcsa univerzális.
DAG topologikus rendezés
Matematika III. előadások MINB083, MILB083
Matematika III. előadások Építőmérnök BSc szak PMMINB313
Lineáris transzformáció sajátértékei és sajátvektorai
MATEMATIKA ÉS INFORMATIKA I.
Készítette: Kosztyán Zsolt Tibor
*** HALMAZOK *** A HALMAZ ÉS MEGADÁSA A HALMAZ FOGALMA
Lineáris algebra.
Gráfok Készítette: Dr. Ábrahám István.
Egyszerű gráfok ábrázolása Pascalban:
GRÁFELMÉLET Alapfogalmak 1..
Vektorok © Vidra Gábor,
Lineáris programozás Elemi példa Alapfogalmak Általános vizsg.
GRÁFELMÉLET.
Lineáris egyenletrendszerek, leképezések, mátrixok
Vektorterek Definíció. Legyen V Abel-csoport, F test, továbbá
Nevezetes algoritmusok: Fa megvalósítása Készítette: Várkonyi Tibor Zoltán.
Gráfok 1. Szlávi Péter ELTE IK Média- és Oktatásinformatika Tanszék
1. MATEMATIKA ELŐADÁS Halmazok, Függvények.
Lineáris algebra.
1 Vektorok, mátrixok.
GRÁFOK Definíció: Gráfnak nevezzük véges vagy megszámlálhatóan végtelen sok pont és azokat összekötő szintén véges vagy megszámlálhatóan végtelen sok.
Valószínűségszámítás II.
Többdimenziós valószínűségi eloszlások
Nagy Szilvia 7. Lineáris blokk-kódok
Projektmenedzsment gráf általában súlyozott irányított
T.5. tétel (minimálpolinom egyértelmű létezése)
Nagy Szilvia 2. Lineáris blokk-kódok II.
Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok Recski András Budapesti Műszaki és Gazdaságtudományi Egyetem.
INFOÉRA Gráfok, gráfalgoritmusok II. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Juhász István-Zsakó László: Informatikai.
Kvantitatív módszerek
HÁLÓZAT Maximális folyam, minimális vágás
GRÁFOK Marczis Ádám és Tábori Ármin. Kőnig Dénes ( ) Magyar matematikus Az első tudományos színvonalú gráfelmélet könyv írója.
Lineáris programozás Elemi példa Alapfogalmak Általános vizsg.
SKALÁROK ÉS VEKTOROK.
Készítette: Horváth Zoltán
HÁLÓZAT Maximális folyam, minimális vágás
Lineáris egyenletrendszerek megoldása Gauss elimináció, Cramer-szabály Dr. Kovács Sándor DE GVK Gazdaságelemzési és Statiszikai Tanszék.
Gráfok - 1 Definíció: Irányított gráf (digráf) G=(V,E) rendezett pár.
Vektorok © Vidra Gábor,
Előadás másolata:

Illeszkedési mátrix Villamosságtani szempontból legfontosabb mátrixreprezentáció. Legyen G egy irányított gráf, n ponton e éllel. Az n x e –es B(G) mátrixot a G gráf illeszkedési mátrixának nevezzük, ha bij=1, ha a j-ik él az i-ik ponthoz illeszkedő hurokél. Irányítatlan esetben az él kezdő és végpontjánál is 1 a mátrix elem.

Példa e1 e2 e3 e6 e4 e5 e7 e8 v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 e1 e2 e3 e4 e5 e6 e7 e8

Tétel Az n pontú c összefüggő komponensből álló, hurokélmentes irányított gráf illeszkedési mátrixának rangja n-c. Összefüggőség irányított gráfban: az éleket irányítás nélkül tekintjük, és akkor ugyanaz, mint irányítatlan esetben. Bizonyítás Ha c > 1, akkor komponensenként sorolva fel a pontokat és éleket, B(G) blokkdiagonális szerkezetű lesz. C1 C2 Cc Elég tehát egy p pontú összefüggő komponensre belátni, hogy a neki megfelelő blokk rangja p-1.

Egy ilyen blokk sorainak száma p, és a sorok összege (0,0,…,0), mert minden oszlopban pont egy +1 és egy -1 áll. (nincs hurokél, minden élnek pontosan egy kezdő és egy végpontja van, és ezek különbözőek): a rang tehát legfeljebb p-1 Legyen F egy feszítőfa ebben a komponensben: p-1 élű. Legyen v1 az F egy elsőfokú pontja, e1 a hozzá illeszkedő él. Ekkor (F - {v1}) is egy fa, legyen v2 egy elsőfokú pontja és e2 a hozzá illeszkedő él. Általában, vi+1 legyen az (F - {v1,v2,…,vi}) fa egy elsőfokú pontja, ei+1 a hozzá illeszkedő él. Ha a blokk sorait v1,v2,…,vp sorrendben soroljuk fel, az oszlopait pedig az e1,e2,…,ep-1 felsorolással kezdjük, akkor a mátrix megfelelő p x p-1-es része a következő alakú: Azaz p-1 lineárisan független oszlopot tláltunk.

Tétel Vegyünk a p pontú összefüggő hurokél mentes irányított G gráf illeszkedési mátrixában p-1 oszlopot. Ezek pontosan akkor lineárisn függetlenek, ha a megfelelő p-1 él G egy feszítőfáját alkotja. Bizonyítás Az előző tétel szerint, ha fa, akkor lineárisan független. Tegyük fel, hogy van egy kör, azaz az e1,e2,…,er élek kört alkotnak ebben a sorrendben. a,b,c,d,e{-1,1} e1 e2 e3 e4 e5 v1 v2 v3 v4 v5 Az e1,e2,…,er éleknek megfelelő oszlopokban a többi elem 0.

a2 -e2 = -a2+b2=…= -d2+e2=0 Legyenek az oszlopok u1,u2,…,ur, a diagonálisban álló elemek a1,a2,…,ar. Ekkor a1u1+…+arur=0. A feszítőfához tartozó p x p-1-es részmátrix bármely sorát elhagyva a maradék determinánsa 1, ugyanis minden esetben pontosan egy nemnulla kifejtési tag van.

Tétel Hagyjunk el a G összefüggő p pontú gráf illeszkedési mátrixából egy tetszőleges sort. A keletkező B0 mátrixból képzett B0·B0T mátrix determinánsa éppen a G feszítőfáinak száma. elhagyott sor A bizonyításhoz használjuk: Tétel(Binet, Cauchy) Ha M egy p x r-es, N egy r x p-es mátrix (ahol pr), akkor az M·N mátrix determinánsa ahol Mi az M valamely p oszlopából, Ni pedig N ugyanazon sorszámú soraiból áll, és a szummázás az összes lehetséges p elemű oszlophalmazra történik.

Példa B0-ból p-1 oszlopot kivéve, ponosan a feszítőfának megfelelők determinánsa lesz nem nulla, mégpedig ±1. B0T megfelelő soraiból álló részmátrix pont ennek transzponáltja, azaz a determinánsa ugyanaz, azaz a kettő szorzata +1. Pontosan annyi +1-et adunk össze, ahány különböző feszítőfa van.

Ha B0·B0T =(dij), akkor dij meghatározható Ugyanis B0 i-ik sorát szorozzuk a j-ik sorával, hogy dij-t kapjuk. Ezt felhasználjuk Cayley tételének újabb bizonyításához.

Az n pontú teljes gráfra

Körmátrix Ha a G irányított gráf egy 2 pólusú alkatrészekből álló hálózat kapcsolási gráfja (irányítás: mérőirányok), akkor Kirchoff csomóponti törvényei (áram egyenletek) a B(G)·i=0 alakban irhatók, ahol az i vektor elemei az egyes alkatrészek áramai. Kirchoff feszültség egyenleteit a körmátrix segítségével lehet leírni: C·u=0 Írjuk elő minden egyes kör "körüljárási irányát" (tetszőlegesen, majd rögzítsük.) Ha G-nek k darab köre van, akkor C(G)=(cij) egy k x i-es mátrix, melyre cij=0, ha a j-ik él nem része az i-ik körnek, cij=1, ha j-ik él benne van az i-ik körben és annak körüljárási irányába mutat, cij=-1, ha j-ik él benne van az i-ik körben és annak körüljárási irányával ellenkező irányba mutat .

Megjegyzés A szomszédsági és az illeszkedési mátrixok izomorfia erejéig meghatározzák a gráfot. A körmátrix nem, például egy síkbarajzolható gráf két különböző (nem izomorf módon) lerajzolt duálisának ugyanaz a körmátrixa. Általában két gyengén izomorf gráfnak ugyanaz a körmátrixa, ha a körüljárási irányokat megfelelően jelöljük ki. Tétel Az n pontú, e élű, c komponensű irányított gráf körmátrixának rangja e - n + c.

Tétel Tekintsünk a p pontú, e élű összefüggő irányított gráf körmátrixában e - p + 1 oszlopot. Ezek pontosan akkor lineárisan függetlenek, ha a megfelelő e - p + 1 él a G egy feszítőfájának komplementere.

Vágásmátrix A körmátrixhoz hasonlóan definiálható: Minden vágás egy komponenst vág szét X1 , X2 részhalmazokra. Egy (u,v) él irányítása megegyezik a vágással, ha u X1 és v X2, ellentétes vele, ha u X2 és v X1. Tétel Legyen B, C és Q rendre egy hurokélmentes irányított gráf illeszkedési, kör-, illetve vágásmátrixa. Tegyük fel, hogy oszlopaik ugyanabban a sorrendben felelnek meg G éleinek. Ekkor B·CT=0 és Q·CT=0.

Vegyük észre, hogy B·CT=0 következik Q·CT=0-ból Vegyük észre, hogy B·CT=0 következik Q·CT=0-ból. B részmátrixa Q –nak, hiszen az egy pontra illeszkedő élek vágást alkotnak. Q CT zij Vi Kj e1 e2 ... em e1 e2 em A zij elem meghatározásánál nem 0 szorzat a Vi vágás és a Cj kör közös éleinél van.

Egy szorzat az +1, ha az él irányítása a vágásban és a körben is megegyezik a vágás, illetve a kör irányításásval, vagy mindkettőben ellentétetes. Vi -1 1 1 1 1 1 1 -1 -1 Egy szorzat az -1, ha az él a vágás és a kör egyikével azonos, a másikkal ellentétes irányú. -1 -1 Tehát +1, ha a kör és a vágás ugyanolyan irányban „halad át” az élen, -1, ha ellentétes irányban. Ezek száma egyenlő, mert a kör pont ugyanannyiszor halad a vágással szemben, mint vele egy irányban.