5. GÁZLÉZEREK Lézeranyag: kis nyomású (0,1 - 760 Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.

Slides:



Advertisements
Hasonló előadás
Az optikai sugárzás Fogalom meghatározások
Advertisements

Moduláris oktatás a 8. évfolyam kémia tantárgyból
Sugárzás kölcsönhatása az anyaggal Készítette: Fehértói Judit (Z0S8CG)
Fémkomplexek lumineszcenciája
SO 2, NO x felbontási hatásfokának vizsgálata korona kisülésben Horváth Miklós – Kiss Endre.
E képlet akkor ad pontos eredményt, ha az exponenciális tényező kitevőjében álló >>1 feltétel teljesül. Ha a kitevőben a potenciálfal vastagságát nanométerben,
FÉNYEMISSZIÓ, FÉNYFORRÁSOK, FÉNYKELTŐ ESZKÖZÖK
Az elektron szabad úthossza
7. A MOLEKULÁK ELEKTRONSZERKEZETE
9. Fotoelektron-spektroszkópia
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA. Lézer: erős, párhuzamos fénysugarat adó fényforrás. Light Amplification by Stimulated Emission of Radiation L ASER.
Kísérleti módszerek a reakciókinetikában
Színképek csoportosítása (ismétlés)
Szilárd anyagok elektronszerkezete
Anyag hullámtermészete
A HIDROGÉN.
Kémiai kötések Molekulák
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Elektromágneses hullámok
Dr. Csurgai József Gyorsítók Dr. Csurgai József
Spektroszkópiai alapok Bohr-féle atommodell
A többelektronos atomok elektronszerkezete
Elektromágneses színkép
A szingulett gerjesztett állapot dezaktiválódási csatornái E SS1S1 S2S2 T1T1 T2T2 ?
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA. Lézer: erős, párhuzamos fénysugarat adó fényforrás. Light Amplification by Stimulated Emission of Radiation L ASER.
Szimmetriaelemek és szimmetriaműveletek (ismétlés)
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
15. A lézerek felhasználása a mérés- technikában, a megmunkálásban és a kémiában.
6.5 Infravörös színképek.
5. OPTIKAI SPEKTROSZKÓPIA
3. Ionkristály lézerek A lézerközeg: fémoxid v. fémhalogenid, amelyben a fémionok kis részét másik fémion („szennyező”) helyettesíti Egykristály: kis spektrális.
Lézerspektroszkópia Előadók: Kubinyi Miklós Grofcsik András
A héliumatom állapotainak levezetése a vektormodell alapján (kiegészítés) 1.
2. Félvezetőlézerek Lézerközeg: p-szennyezett és n-szennyezett félvezető anyag közötti határréteg Az elektromos vezetés szilárdtest-fizikai alapjai szükségesek.
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
8. A MOLEKULÁK ELEKTRONSZERKEZETE
ATOMOPTIKA atomok terelése: litografált rácsokkal, diafragmákkal stb, erős fényerőkkel (rezonanciától elhangolt erős lézerfény) > 0 („kék elhangolás”)
Energia Energia: Munkavégző képesség Különböző energiafajták átalakulhatnak Energiamegmaradás: zárt rendszer energiája állandó (energia nem vész el csak.
3. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy
6. A MOLEKULÁK FORGÓMOZGÁSA
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
15. A lézerek felhasználása a mérés- technikában, a megmunkálásban és a kémiában.
Kubinyi Miklós ) Lézerspektroszkópia Kubinyi Miklós )
ATOMFIZIKAI ALAPOK.
Lézer- források Kereskedelmi forgalomban levő lézerek sugárzásának hullámhossza.
Lézerek alapfelépítése
Raman spektroszkópia hn0 hn0 hn0 hn0 hn0 hn0 hnS hnAS
Kvantumelektrodinamika
7. A MOLEKULÁK ELEKTRONSZERKEZETE 7.1 A variációs elv.
Egyszerű ionok képződése
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
Plazmamonitorok.
A negyedik halmazállapot: A Plazma halmazállapot
Fényérzékenyítés fotodinamikus hatás általában destruktív jellegű fehérjéket, nukleinsavakat, membránalkotókat módosíthat.
Elektromágneses rezgések és hullámok
Fémkomplexek lumineszcenciája
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
48°. 2, Egy 8 cm-es gyújtótávolságú gyűjtő lencsével nézünk egy tárgyat. Hova helyezzük el a tárgyat, hogy az egyenes állású kép a d = 25 cm-es tiszta.
ATOMOPTIKA atomok terelése: litografált rácsokkal, diafragmákkal stb, erős fényerőkkel (rezonanciától elhangolt erős lézerfény) > 0 („kék elhangolás”)
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
Analitikai Kémiai Rendszer
Fizikai kémia 2 – Reakciókinetika
Fizikai kémia 2 – Reakciókinetika
A H-atom kvantummechanikai tárgyalása Tanulságok
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
5. OPTIKAI SPEKTROSZKÓPIA
A lézerek működése Segédanyag a „Barangolás Tudásvárosban” élménytábor „Izgalmas modern fizikai kísérletek” előadásához Dr. Majár János.
Fotofizikai folyamatok jellemzése
Előadás másolata:

5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek között (infravörös lézerek) forgási szintek között (távoli infravörös lézerek) Pumpálás: elektromos energiával, gázkisülést létrehozva (optikai pumpálásnak nincs értelme, mert a gázok abszorpciós vonalai keskenyek) Méret: sokkal nagyobbak a szilárdtestlézereknél, mivel kisebb a lézeraktív anyag koncentrációja. Például: He-Ne lézer ~ molekula/m 3 Nd-YAG lézer ~ Nd-ion/m 3

Hélium-neon lézer Lézeranyag: ~10:1 arányú He/Ne elegy, össznyomás ~1 torr A lézerátmenet a Ne atomoktól származik, a He segédanyag

A Ne elektronkonfigurációi és állapotai A Ne a 10. elem Alapállapotú konfiguráció: 1s 2 2s 2 2p 6 Gerjesztett konfigurációk: 1s 2 2s 2 2p 5 3s 1 1s 2 2s 2 2p 5 4s 1 1s 2 2s 2 2p 5 5s 1 1s 2 2s 2 2p 5 3p 1 1s 2 2s 2 2p 5 4p állapot állapot

A hélium és a neon energiaszintdiagramja

Nitrogénlézer Lézeranyag: ~0,2 bar nyomású N 2 gáz A N 2 alapállapota szingulett (S=0) A gázkisülésben ütközéssel sokféle gerjesztett elektronállapot jöhet létre: - szingulett (S=0) gerjesztett és - triplett (S=1) gerjesztett állapotú molekulák keletkeznek. A lézerátmenet a N 2 két triplett állapota között történik.

A molekulapályák betöltése az N 2, alapállapotában (X) és két triplett gerjesztett állapotában (B,C)

Az N 2 molekula lézerátmenete

A nitrogénlézer felépítése

Excimerlézerek Excimer = excited dimer Olyan dimer, amely gerjesztett elektrtonállapotban stabil, de alapállapotban nem. Pl. Xe 2 molekula Exciplex = excited complex Olyan komplex, amely gerjesztett állapotban stabil, de alapállapotban nem. Nemesgázok halogénekkel képeznek ilyen komplexet. Az excimerek és exciplexek stabilitásának oka: a gerjesztett állapot részlegesen ionos jellegű, a halogénatom részben átvesz egy elektront a nemesgáztól.

Excimermolekula energiaszint-diagramja

Excimerlézerek hullámhossza Xe 2 ? ArF193 nm KrF248 nm XeF351 nm KrCl222 nm XeCl308 nm XeBr282 nm

Az excimerlézerek alkalmazásai Jellemző tulajdonságok: - Az UV-tartományban működnek - Viszonylag széles tartományban hangolhatók - Impulzusüzeműek - Energiájuk nagyobb a N 2 -lézernél Alkalmazások: rétegek megmunkálása UV-fénnyel fotokémiai kísérletek

Argonlézer Lézer közeg: ~0,5 torr nyomású Ar-gáz, kisülési csőbe töltve Kisülésben- gerjesztett molekulák - alapállapotú ionok jönnek létre (plazma) - különböző gerj. áll. ionok A kisülési cső működési jellemzői: áramerősség, feszültség, nyomás, hőmérséklet - ezektől függ az Ar + ionok populációja különböző energiaszinteken. Inverz populáció érhető el az Ar + ion egyes gerjesztett állapotaiban, náluk kisebb energiájú gerjesztett állapotokhoz képest. } A lézersugárzás az Ar + ionoktól származik! („Argonion”lézer)

Az Ar a 18. elem. Ar-atom konfigurációja: 1s 2 2s 2 2p 6 3s 2 3p 6 Ar + -ion legkisebb energiájú konfigurációja: 1s 2 2s 2 2p 6 3s 2 3p 5

Argon-lézer felépítése

CO 2 -lézer Lézer közeg: ~ 1:1 arányú CO 2 -N 2 elegy zárt változat: - ~10 torr nyomású gáz zárt kisülési csőben nyitott változat - ~ atmoszférikus nyomású gáz nyílt kisülési csőben A lézer átmenet a CO 2 -molekula gerjesztett rezgési állapotai között történik, ezért infravörös fényt ad. A N 2 segédanyag.

A CO 2 -molekula normál rezgései szimmetrikus nyújtásdeformációaszimmetrikus nyújtás v 1 v 2 v 3 A három normálrezgés gerjesztettségét jellemző kvantumszámok.

A CO 2 és a N 2 rezgési-forgási szintjei

Előny: Az elektromos energiát nagy hatásfokkal (10-20 %) infravörös fénnyé alakítja. - folytonos és impulzus üzemmódú lézer is készíthető - a folytonos üzemmódú ~100 kW energiájú fényt is adhat Felhasználás: fémmegmunkálás sebészet spektroszkópiában plazmák előállítása

Lézerplazma távolról

Lézerplazma közelről

Plazmaspektrum 1.

Plazmaspektrum 2.