Mérési skálák, adatsorok típusai dr. Jeney László egyetemi docens jeney@elte.hu Regionális elemzések módszerei III. Szociológia alapszak, regionális és településfejlesztés specializáció; Minden alapszak 2018/2019, II. félév BCE Geo Intézet
Statisztikai fogalmak Sokaság: A megismerni kívánt, megfigyelt egységek halmaza Ismérvek: A sokaság jellemzésére, részekre bontására alkalmas vizsgálati szempontok Területi elemzések: legalább 2 ismérv Területi ismérv Változók: időbeli, mennyiségi, minőségi ismérvek Adatok jól csoportosíthatók az összehasonlíthatóságuk szerint mérési (vagy adat) skálák rendszere 2
Mérési skálák 3
A mérési skálák rendszere Tulajdonság Sajátosságok Jellemző példák Arány xa / xb Megkülönböztetés, sorrend, különbség, arány Van elméleti minimum, azonos előjelű Népességszám, jövedelem, utasforgalom Intervallum xa – xb Megkülönböztetés, sorrend, különbség Pozitív és negatív értékek Vándorlási különbözet Ordinális (sorrendi) xa ≥ xb Megkülönböztetés, sorrend Nehezen mérhető, csak sorrendbe állítható Sorrendek, rangok, eltérő funkcionális szintek Nominális xa ≠ xb Megkülönböztetés Nem számszerű Név, születési hely, nem 4
Mérési skálák hierarchiája Mindegyik mérési skála rendelkezik az alatt lévő tulajdonságaival A „hierarchia csúcsán” az arányskála áll Legteljesebb összehasonlításra ad lehetőséget Mérési skála meghatározza a matematikai–statisztikai módszereket Brazil válogatott nem 63X jobb mint a magyar 0 átlagú adatsor: korlátzott módszertan (pl. nem lehet az átlag %-ában megadni) Többváltozós vizsgálatoknál: Többféle mérési skála, de azonos mérési skálájú adatokra van szükség adat-transzformáció Leggyakrabban: intervallum- vagy arányskálán mért jellemzők ordinális adatskálára átalakítása (pl. komplex mutatóknál: rangsorolás) Azonos értékek: rangszámok is azonosak Páratlan számú (pl. 3) adat egyezése: középső rangszám (8., 9., 10. helyett 9., 9. és 9.) Páros számú (pl. 2) adat egyezése: rangszámok átlaga (4. és 5. helyett 4,5. és 4,5.) Nincs holtversenyben elsőség: 1. és 2. helyett 1,5. és 1,5 (1. és 1. helyett) 5
Nem fajlagos és fajlagos mutatók 6
Adatsorok 2 fő típusa: nem fajlagos és fajlagos mutatók Nem fajlagos (abszolút) mutatók Pl. népességszám, GDP, személygépkocsik száma, terület, városlakók száma Jelölése: xi azaz x abszolút mutató értéke adott „i” régióban Fajlagos mutatók (relatív vagy származtatott mutatók) Pl. egy főre jutó GDP, ezer lakosra jutó személygépkocsik, népsűrűség, városlakók aránya Lehet százalékos részesedés is: pl. városlakók aránya Jelölése: yi azaz y fajlagos mutató értéke adott „i” régióban Általában 2 nem fajlagos mutató hányadosa, pl. GDP és népesség (ritkán 2 fajlagos mutató hányadosa, pl. megyei GDP/fő az országos átlagos GDP/fő %-ában) Esetükben súlyozni kell (pl. súlyozott átlag, súlyozott szórás) A súly a fajlagos mutató képletének nevezőjében van, jelölése fi azaz f súly értéke adott „i” régióban Súly gyakran népességszám, de nem mindig 7
Nem fajlagos – fajlagos mutatók valamint a súly közötti átszámítások Ha a nem fajlagos mutató (GDP) és a súly (népességszám) ismert A fajlagos mutató (GDP/fő): a nem fajlagos mutató és a súly hányadosa Ha a nem fajlagos (GDP) és a fajlagos mutató ismert (GDP/fő) A súly (népesség): a nem fajlagos és a fajlagos mutató hányadosa Ha a fajlagos mutató (GDP/fő) és a súly (népesség) ismert Nem fajlagos mutató (GDP): a fajlagos mutató és a súly szorzata 8