A városhierarchia vizsgálati módszerei dr. Jeney László egyetemi docens jeney@elte.hu Európa városi terei Geográfus szak (MSc) 2017/2018, I. félév ELTE Földrajz Központ
Sorrend–nagyság szabály (rank size analysis) A településhierarchia polarizáltságának mérése Városok rangsora (általában népességszámuk alapján) Szabályszerű eloszlás: F. Auerbach (német geográfus, 1913) Rangsorban az n-edik város népessége = a legnépesebb város n-ed részével (Auerbach-szabály) – Zipf-eloszlás Ábrázolási lehetőségek Főben (időbeli) vagy a legnépesebb város értékének százalékában (területi összehasonlításoknál) Normál vagy logaritmikus beosztású tengelyekkel Népességre vagy más abszolút adatra Vizsgálati lehetőségek Területek összehasonlítása Időállapotok összehasonlítása Funkciók összehasonlítása 2
Sorrend–nagyság vizsgálat valós tengelyekkel Tengely beosztása főben Oszlopdiagram Magyarország: hiányoznak Budapest ellenpólusai 3
Sorrend–nagyság vizsgálat valós tengelyekkel Tengely beosztása főben Grafikon (vonaldiagram) Magyarország: hiányoznak Budapest ellenpólusai 4
Sorrend–nagyság vizsgálat logaritmikus beosztású tengelyekkel Tengely beosztása logaritmikusan Vonaldiagram Jelmagyarázat Szabályos: Auerbach-féle eloszlás 5
Területek összehasonlítása: Európa néhány országának városhierarchiája Eltérő településhierarchiák háttere Természeti környezet: domborzat (Alpok), éghajlat (Skandinávia), természeti erőforrások (konurbációk) Történelmi örökség: birodalmi központok, határváltozások Politikai berendezkedés, közigazgatás: centralizált (szoc.) vagy föderatív Közlekedési hálózatok: sugaras vagy rácsos Településhálózat-fejlesztés: növekedési pólusok vs. vízfejek 6
A sorrend-nagyság szabály Európa néhány országában, 2005-ben A 4 ország közül Magyarország rendelkezik a legkoncentráltabb városhierarchiával 7
Policentrikus indiai városhálózat Eredmények Viszonylag kiegyenlített városhierarchia Időben is egyre kiegyenlítettebbé válik Szabályszerű eloszlás: F. Auerbach (német geográfus, 1913) Rangsorban az n-edik város népessége = a legnépesebb város n-ed részével (Auerbach- vagy Zipf-szabály) 8
Funkciók összehasonlítása A népességszámhoz képest polarizáltabb megoszlások a többi mutatónál Általában kiegyenlítettség Kiv.: nemzetközi szervezetek székhelyei Legkiegyenlítettebb: felsőoktatás 9
Európai városhierarchia vizsgálatok gyakori problémája: Európa = Fejlett Európa 10
A városhierarchia vizsgálatokhoz alkalmas mutatók Változókészlet eltér: Területi szintenként Időben Országonként Abszolút mutatók alkalmasak Népességszám Gazdasági funkciók: vállalatok székhelyei (headquarters), azok összprofitja Közlekedési funkciók: hálózati bekötöttség, irányultság, állomáson megforduló forgalom, elérhetőség Intézmények: közigazgatás, oktatás, egészségügy stb. Nemzetközi szervezetek székhelyei Események, rendezvények, konferenciák Turizmus Fajlagos mutatók (pl. egy főre jutó GDP) kevésbé alkalmasak 11
A nagyvárosrangsor a legnagyobb vállalatok alapján: székhely és összprofit A Föld 500 legnagyobb vállalatának székhelyei között nem találunk kelet-közép-európai nagyvárost Összprofit (millió $) Népességszám (fő) 750 ezer alatt 750 ezer–1 millió 1–2 millió 2 millió felett 20 ezer felett London, Párizs 6–20 ezer Amszterdam, Hága München Madrid, Róma 1–6 ezer Stockholm, Koppenhága, Essen, Stuttgart, Düsseldorf Brüsszel Milánó Ezer alatt Frankfurt, Helsinki, Duisburg, Hannover, Göteborg Köln, Torino Hamburg Berlin 12 Forrás: Fortune, Global 500
Európai rangsor a nemzetközi szervezetek találkozói alapján (2001, világ=100%) Kelet-Közép-Európa nagyvárosai közül Budapesten rendezték a legtöbb nemzetközi találkozót 13
Európa legfontosabb repülőjáratai, 2001-ben Forrás: Association of European Airlines (AEA) 2002 14
Európa legfontosabb repülőjáratai, 2001-ben A legtöbb utas London és Dublin között utazott Tényezők Szoros kapcsolatok Földrajzi fekvés (szigetjelleg) Nemzetközi gazdasági bekötöttség A 20 legforgalmasabb járat többnyire vagy Londont vagy Párizst érintette Néha megjelennek nem fővárosok is Kelet-Közép-Európa hiányzik 15 Forrás: Association of European Airlines (AEA) 2002
Az európai nagyvárosok csoportosítása a repülőjárataik célirányaik szerint 16
Az európai nagyvárosok komplex hierarchiája (Jeney L. – Keresztély K.) Népességszám (fő) 750 ezer alatt 750 ezer–1 millió 1–2 millió 2 millió felett 4 London, Párizs 3 Amszterdam, Frankfurt München, Milánó Berlin, Róma, Madrid 2 Krakkó, Riga, Manchester, Stockholm, Hága, Hannover, Málaga, Lisszabon, Düsseldorf, Helsinki, Koppenhága, Duisburg, Essen, Stuttgart, Lyon Athén, Dublin, Brüsszel, Köln, Torino, Birmingham, Marseille, Nápoly Barcelona, Budapest, Szófia, Prága, Hamburg, Bécs, Varsó 1 Leeds, Liverpool, Bréma, Dortmund, Genova, Vilnius, Zaragoza, Glasgow, Lipcse, Rotterdam, Göteborg, Sevilla, Drezda, Sheffield, Poznan, Palermo, Valencia, Wroclaw Lodz Bukarest 17
A különböző jellegű adatok összeegyeztetése Több adatsor együttes figyelembevételének igénye teremti meg Komplex mutató számítás alapja a változók összevonhatóvá tétele Különböző jellegű adatok Eltérő mértékegységek Eltérő volumenek Eltérő mérési skálák Eltérő szórásúak Eltérő fontosságúak Ehhez az adatok átalakítása, új adatok létrehozása szükséges annak érdekében, hogy összevonhatóvá váljanak dimenziótlanító eljárások Eltűnnek a mértékegységek Eltűnnek a nagyságrendi értékkülönbségek 18
Mérési skálák hierarchiája Mindegyik mérési skála rendelkezik az alatt lévő tulajdonságaival A „hierarchia csúcsán” az arányskála áll Legteljesebb összehasonlításra ad lehetőséget Mérési skála meghatározza a matematikai-statisztikai módszereket Brazil válogatott nem 63X jobb mint a magyar 0 átlagú adatsort nem lehet az átlag %-ában megadni Többváltozós vizsgálatoknál Többféle mérési skála, de azonos mérési skálájú adatokra van szükség adat-transzformáció 19
A mérési skálák rendszere Tulajdonság Sajátosságok Jellemző példák Arány xa / xb Megkülönböztetés, sorrend, különbség, arány Van elméleti minimum, azonos előjelű Népességszám, jövedelem, utasforgalom Intervallum xa – xb Megkülönböztetés, sorrend, különbség Pozitív és negatív értékek Vándorlási különbözet Ordinális (sorrendi) xa ≥ xb Megkülönböztetés, sorrend Nehezen mérhető, csak sorrendbe állítható Sorrendek, rangok, eltérő funkcionális szintek Nominális xa ≠ xb Megkülönböztetés Nem számszerű Név, születési hely, nem 20
Dimenziótlanító és egyéb komplex mutatóhoz alkalmazott eljárások Adatsor fejlettséget-elmaradottságot milyen módon, milyen irányba fejezi ki? Növekvő érték a fejlettséget, vagy elmaradottságot fejezi ki Rangsorolás, Pontozáson alapuló módszer Adatsor jellegadó (szélső-, közép- és szórás) értékeihez való viszonyítás Átlaghoz viszonyítás Maximumhoz viszonyítás (Bennett-féle komplex mutató) Normalizálás Standardizálás Mértani átlag Főkomponens- és a faktoranalízis 21
3.b. Maximumhoz viszonyítás a Bennett-féle komplex mutatóval Maximumra vetített jelzőszámok területegységenkénti átlagolására szolgál Maximum = 100 Népszerű, mert az eljárás eredményeként a %-ra átalakított értékek, ill. azok átlagának értékkészlete a (0;100) intervallumba esik. (j=területegységek száma) 22
Egy indiai városhierarchia vizsgálat eredményei 23
Egy indiai városhierarchia vizsgálat eredményei (vezető városok 9 dimenzióban) Egyetemi hallgató Hotelférőhely Rendezett konferencia Kórház Légiforgalmi kapcsolat + további 4 dimenzió Összesen 9 dimenzió Ez alapján komplex (összesített) városhierarchia 24
dimenziók száma (max = 9) Egyszerű városhierarchia: mennyi dimenzióban szerepel a város a top20-ban? város dimenziók száma (max = 9) Mumbai, Új-Delhi 9 Bangalore, Calcutta, Chennay, Hyderabad 8 Ahmedabad, Jaipur 7 Coibatore 6 Cochi, Bubaneswar, Lucknow, Pune 5 Thiruvananthapuram 4 Vishakapatnam, Patna, Bhopal, Gurgaon 3 25
Finomított városhierarchia: Bennett-féle komplex mutató alapján A különböző jellegű adatok összeegyeztetésének nehézségei 9 dimenzió adatsorai eltérő volumenek, mértékegységek Megoldás: maximumhoz viszonyítás Ilyen a Bennett-féle komplex-mutató Maximum = 100 % Százalékos részadatok összegzése Város Összesítet % Új-Delhi, Mumbai 700 felett Chennai, Bangalore, Calcutta, Hyderabad 200–700 Jaipur, Ahmedabad, Darphanga, Bhubaneswar 90–200 Thiruvananthapuram, Lucknow, Patna, Dehradum, Bhopal, Pune, Ranchi, Kochi 60–90 26
Főbb konklúziók: átalakuló indiai városhierarchia Földrajzi átrendeződés Korábban: vezető városok = kikötővárosok (Mumbai, Chennai, Kolkata) Ma: belső városok is gyorsan fejlődnek (Delhi, Bangalore, Hyderabad) Súlypont ÉK-re tolódott Kiegyenlítettség Relatíve kiegyenlített városhierarchia Időben egyre kiegyenlítettebbé válik Komplex városhierarchia erősen követi a népességnagyságot Bipoláris (Mumbai és Delhi) 27