Lenti Róbert Villamosmérnök BSC

Slides:



Advertisements
Hasonló előadás
Passzívház.
Advertisements

A szabadidő központ energiaellátása geotermikus és fotovoltaikus energiaforrások kombinálásával Szekszárd.
Széchényi Ferenc Gimnázium
Mivel fűtünk majd, ha elfogy a gáz?
Az alternatív energia felhasználása
Készítette: Rusznyák Noémi 12/a.
A megújuló energiaforrások
Energiahatékonyak vagyunk? Szabó Valéria projektmenedzser.
Fordított ciklusú gépek
5. témakör Hőtermelés és hűtés.
ROBUR Gázbázisú abszorpciós Hőszivattyúk
Hatékonyságnövelő intézkedések megengedhető többletköltsége
Termálvizes fürdő bővítése
Tesco a zöld Magyarországért Műszaki megoldások a fenntartható fejlődés szolgálatában Szentendre Dézsi Ferenc műszaki és fenntartási igazgató.
A DVANCED E FFICIENT E NERGY S YSTEMS K ft. H-1124 Budapest, Fürj u. 31. Kálmán László Alternatív energetikai koncepciók készítése.
Energiatakarékos otthon
VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
Megújuló energiaforrások otthon Út egy környezettudatosabb otthon felé Misli Bence I. Béla Gimnázium, Szekszárd.
Készítette:Eötvös Viktória 11.a
Megújuló energiaforrások.
Geotermikus energia A geotermikus energia a Föld belső hőjéből származó energia. A Föld belsejében lefelé haladva kilométerenként átlag 30 °C-kal emelkedik.
A Föld megújuló energiaforrásai
Hővezetés Hőáramlás Hősugárzás
Készítette: Éles Balázs
5. témakör Hőtermelés. 1. Hőellátási módok A felhasznált végenergia kb. 2/3-a hő. Hőigény: – ipari-technológiai (kb. 50 %): nagy hőmérsékletű (hőhordozó:
Geotermális energia.
5. témakör Hőtermelés és hűtés.
Környezet- és emberbarát megoldások az energiahiányra
Levegő-levegő hőszivattyú
Alternatív energiaforrások-megújuló energiaforrások
Összefoglalás 7. osztály
Gőz körfolyamatok.
HŐÁTVITELI (KALORIKUS) MŰVELETEK Bevezető
Az alternatív energia felhasználása
Az alternatív energia felhasználása
Az alternatív energia felhasználása
Belső hőforrások, hőtermelés-hőellátás
= Főmenü. = napenergia menü = szélenergia menü.
Passzívház Török Krisztián Kovács Kornél
Megújuló energiák Készítette: Simon Zalán 7. b
megújuló ENERGIÁK Iskola: Vak Bottyán János Általános Iskola
Megújuló energia Készítette: Bíró Tamás
Alternatív energiaforrások
Termikus kölcsönhatás
HŐTERJEDÉS.
Megújuló energiaforrások
Energia és takarékosság a háztartásban
Geotermális energia.
Megújuló energiaforrások
EGYFOKOZATÚ KOMPRESSZOROS HÜTŐKÖRFOLYAMAT
Napelemek működése és használata mindennapjainkban
A MEGÚJULÓ ENERGIA FORRÁSOK ÉPÜLETGÉPÉSZETI HASZNOSÍTÁSI LEHETŐSÉGEI
„Megújuló energiaforrások a térségfejlesztés szolgálatában” Gulyás Gréta 12.a Bartha Szabolcs 10.a Hegedűs Márton 10.a Gyöngyösi József Attila Szakközépiskola,
Megújuló Energiaforrások
Gőz körfolyamatok.
Hőszivattyú.
Az alternatív energia felhasználása
Műszaki és informatikai nevelés 5. osztály
Az alternatív energia felhasználása
Dr. Gutay Zoltán – ügyvezető Kovács Sándor épültgépész-mérnök
A Dunaújvárosi Főiskola megújuló energiaforrás beruházásának elemzése Duhony Anita /RGW4WH.
A hőszivattyúk gyakorlati alkalmazásának tapasztalatai, a fejlesztések várható irányai Csanaky Lilla Innowatt Épületgépészeti Tervező és Szerelő Kft
Az alternatív energia felhasználása Összeállította: Rudas Ádám (RUARABI:ELTE)
falhűtés tengervízklímakonvektoros hűtés medencevíz fűtés.
Padlófűtés előnyei 1. Padlófűtés rendszer energiatakarékosabb a radiátorral szemben, mivel a padlófűtés esetén hatékonyabban adja át a fűtésrendszer csöve.
Gőz körfolyamatok.
Napelemes rendszerek és a napkollektor
Készítetek: Toboz Angelika, Árvai Krisztina Toboz István, Toboz Dániel
Bodó Béla, mesteroktató, energetikus
Fenntarthatósági témahét
Előadás másolata:

Lenti Róbert Villamosmérnök BSC Geotermikus energia Lenti Róbert Villamosmérnök BSC

Bevezető A nap melege, amely a földkéregben raktározódik el, a geotermikus hőszivattyúk számára kimeríthetetlen energiaforrást jelent. Az évszakok megszokott körforgása folyamán ez az energia a hidegebb évszakokban folyamatosan csökken, a melegebb évszakokban folyamatosan növekszik, de a hőszivattyúk zavartalan működéséhez elegendő a téli időszakban található hőmennyiség. Minden egyes épület alatt elegendő elraktározott energia van, amely több, mint amennyi el tudja látni a fűtési/hűtési szükségleteket.

Hőszivattyú A hőszivattyú működtetéséhez szükséges hagyományos energiaforrások (villamos energia vagy földgáz) használata is. Kivétel, ha például napelemmel, biogázzal, vagy éppen szélenergiával biztosítjuk a működtető villamos energiát. Jelentős energiamennyiséget spórolunk meg, még akkor is, ha igénybe veszünk hagyományos energiaforrásokat. A hőszivattyú egy olyan gépi berendezés, amely az alacsonyabb hőfokszintről külső energia bevezetésével a magasabb hőfokszintre hőt szállít. A hőszivattyú az elvi működés és hőtani folyamat szempontjából egyenlő a gáznemű közvetítő közeggel üzemelő hűtőgéppel, hiszen az gáz segítségével hűti le a levegőt. Azonban a hőszivattyú képes hűteni és fűteni egyaránt, azaz a télen a fűtést, nyáron pedig a klímatizált hűtést is megoldhatjuk ezen szerkezet segítségével, azaz rendeltetésében is eltér egy hűtőgéptől.

Hőszivattyú Hőszivattyúnál az alsó hőfokszint a hőforrás, mely lehet folyóvíz, környezeti levegő, hulladékhő, napenergia, vagy geotermikus energia. A hűtőgépeknél az alsó hőforrás a hűtőszekrény. Az alacsony hőfokszinten párolgó folyadékok, illetve ezen nedves gőz elegyei kiválóan alkalmasak hűtőközegnek, mivel a hőfelvétel és hőleadás közben a hőmérsékletük állandó Mindemellett természetesen az év mind a négy évszakában meleg víz is előállítható vele. Működésük halk, méreteik nagyjából a hazánkban kapható 150 literes hengerűrtartalmú bojlerek méreteivel megegyezőek, de természetesen léteznek ezeknél nagyobb berendezések, valamint komplett rendszerek is. Várható üzembiztos élettartamuk nagyságrendileg 28-30 évre tehető. 

Hőszivattyú típusai Talajkollektoros (klikk) Kétféle típusú hőszivattyúrendszer segítségével nyerhető ki a földkéreg belső hője, melyek a talajkollektoros, valamint a talajszondás rendszer. Talajkollektoros (klikk) A talajkollektoros rendszer esetén több száz méter hosszú speciális PVC köpennyel ellátott rézcsöveket, vagy polietilén csöveket fektetnek le 1-2 méter mélyen. Hátránya, hogy a fűtött alapterület minimum másfélszeresén, maximum háromszorosán, azaz viszonylag nagyméretű területen kell a csöveket lefektetni, ezért leginkább új építésű házak esetén alkalmazzák ezt a típusú hőszivattyút. Segítségével megközelítőleg 20-30 Watt közötti energia termelhető négyzetméterenként. Ennek nagysága több környezeti tényező függvénye, mint például a talaj nedvességtartalma, hővezetése, vagy éppen az esetleges talajvíz.

Hőszivattyú típusai Talajszondás (klikk) A talajszondás rendszer alkalmazásakor 50-200 méter hosszú, nagyjából 15 cm átmérőjű, rendszerint függőleges lyukat fúrnak a földbe (lásd a képet). Ebbe henger alakú lyukba helyezik a hőszivattyúhoz kapcsolódó szondát, amiben zárt rendszerben áramlik a hűtőközeg. A maximális, 200 méteres mélység esetén nagyjából 17 °C-os a Föld hőmérséklete. A szondák egyik speciális esete az, amikor több szondát egymás mellé helyeznek, melyek nyáron eltárolják a hőenergiát a földben, amit télen hasznosítanak. Ezt nevezzük energiakarónak. Az energiakaró különösen nyáron, hűtési igény felmerülésénél, illetve ipari mértékű felhasználás esetén gazdaságos. Léteznek olyan szondák is, melyeket számottevően mélyebbre, 1-2 kilométer mélyre helyeznek. Ezen szondák esetében már nem a talajrétegben közvetlenül eltárolt napenergia használják fel fűtésre, vagy éppen hűtésre, hanem a Föld belső hőjét, melyet geotermikus energiának nevezünk. A hőszivattyú három fő alkalmazási területe a fűtés, a hűtés, valamint a melegvíz készítés.

Hőszivattyú előnyei A különböző hőszivattyús rendszerek tökéletesen alkalmasak olyan épületek fűtésére, hűtésére, melegvíz ellátására, amelyekben környezeti adottságaiknál fogva nincs bevezetve a vezetékes földgáz. Az évszakok változásától függetlenül az év teljes hosszában képesek közvetett módon felhasználni a Nap energiáját, hiszen a rendszer működését a pillanatnyi napsugárzás erőssége nem befolyásolja, ugyanis a hőszivattyú a környezetben eltárolt energiát hasznosítja, mely akár alacsony hőmérsékletű hőforrásból is származhat. Abban az esetben, amikor fűtést, a melegvíz ellátását és a hűtést is kizárólag, teljes egészében hőszivattyús rendszer végzi, a helyszínen semmilyen szintű károsanyag-kibocsátás nem történik, hiszen a berendezés csupán hideg, illetve meleg levegőt enged vissza légtérbe, talajvizes rendszer esetén pedig talajvizet enged vissza a talajba. Számokkal kimutatva a következő történik: 25% egyéb energia(áram, gáz, stb.) befektetéssel megtermelhető a lakásunk fűtéséhez, hűtéséhez, valamint melegvíz ellátásához szükséges energia 100%-a. Azaz az energiafelhasználásunk 3/4-ét ingyenesen, a környezetből nyerhetjük a szerkezet segítségével, valamint a klimatizálásra sem kell költenünk már, hiszen a berendezés a forró nyári napokon is kellemesen hűvös klímát varázsol otthonunkba, ráadásul környezetbarát módón.

Köszönöm a figyelmet!

Talajkollektoros rendszer

Talajszondás rendszer