MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK

Slides:



Advertisements
Hasonló előadás
TÖMÖRÍTÉS. Fogalma A tömörítés egy olyan eljárás, amelynek segítségével egy fájlból egy kisebb fájl állítható elő. A tömörítési arány függ a fájl típusától,
Advertisements

Gazdaságstatisztika, 2015 RÉSZEKRE BONTOTT SOKASÁG VIZSGÁLATA Gazdaságstatisztika október 20.
Becsléselmélet - gyakorlat október 14.. Példa 1 - Feladatgyűjtemény Egy nagyvállalat személyzeti osztályvezetője azt gyanítja, hogy különbség van.
Oktatói elvárások, oktatói vélemények a hallgatókról Cserné dr. Adermann Gizella egyetemi docens DUE.
Paraméteres próbák- konzultáció október 21..
TEROTECHNOLÓGIA Az állóeszközök újratermelési folyamata.
Palotás József elnök Felnőttképzési Szakértők Országos Egyesülete
tananyag =előadások és gyakorlatok anyaga (írott és elmondott is)
Valószínűségi kísérletek
Bevezetés Biometria I. Molnár Péter Állattani Tanszék
Muraközy Balázs: Mely vállalatok válnak gazellává?
2. előadás Viszonyszámok
Leíró statisztika Becslés
Becslés gyakorlat november 3.
Mintavétel és becslés október 25. és 27.
Áramlástani alapok évfolyam
Komplex természettudomány 9.évfolyam
A közigazgatással foglalkozó tudományok
A szórás típusú egyenlőtlenségi mutatók
Kockázat és megbízhatóság
Kockázat és megbízhatóság
Szigorlati felkészítő Kvantitatív módszerek
Mintavétel és becslés október 27. és 29.
Becsléselmélet - Konzultáció
Kockázat és megbízhatóság
Mintavételes eljárások
Kockázat és megbízhatóság
Gazdaságstatisztika LEÍRÓ STATISZTIKA október 16.
Kvantitatív módszerek
Eloszlásjellemzők I.: Középértékek
A mozgási elektromágneses indukció
Komplex természettudomány 9.évfolyam
Hipotézisvizsgálat.
Mintavételes eljárások
Piaci kockázat tőkekövetelménye
Hipotézisvizsgálatok általános kérdései Nemparaméteres próbák
Gazdaságstatisztika Korreláció- és regressziószámítás II.
Tartalékolás 1.
Összefüggés vizsgálatok
Varianciaanalízis- ANOVA (Analyze Of VAriance)
Kvantitatív módszerek
Szabályozott és képes termékek/szolgáltatások, folyamatok, rendszerek
Hogyan lehet sikeresen publikálni?
Kvantitatív módszerek
Standardizálás.
Érték-, ár-, volumenindexek
Regressziós modellek Regressziószámítás.
Sztochasztikus kapcsolatok I. Asszociáció
Kvantitatív módszerek
Compliance és Corporate Governance
Új pályainformációs eszközök - filmek
Matematika 10.évf. 5.alkalom
3. előadás.
Statisztika Érettségi feladatok
Alkalmazott statisztikai alapok
Területi egyenlőtlenségek összetettebb mérése: Gini együttható
A munkaerő-keresleti rugalmasságok
SZAKKÉPZÉSI ÖNÉRTÉKELÉSI MODELL I. HELYZETFELMÉRŐ SZINT FOLYAMATA 8
Dr. Varga Beatrix egyetemi docens
Foglalkoztatási és Szociális Hivatal
A területi koncentráció mérése: Hirschman–Herfindahl index
Műveletek, függvények és tulajdonságaik Mátrix struktúrák:
Lorenz-görbe dr. Jeney László egyetemi adjunktus
Kísérlettervezés 2018/19.
3. előadás.
Vektorok © Vidra Gábor,
Algoritmusok.
Mintavételes eljárások
Területi egyenlőtlenségek összetettebb mérése: Gini együttható
A statisztikus elemző specializió
Előadás másolata:

MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK Gazdaságstatisztika MINTAVÉTEL, LEÍRÓ STATISZTIKAI MUTATÓSZÁMOK 2017. október 10. , október 12.

Sokaság: a vizsgálat tárgyát képező egységek összessége Matematikai statisztika lényege Sokaság: a vizsgálat tárgyát képező egységek összessége Következtetés A megfigyelési eredmények a minta elemei, a megfigyelések száma a minta nagysága vagy elemszáma. A minta elemei az alapsokaság eloszlásával megegyező eloszlású valószínűségi változók. Minta: valamely valószínűségi változóra vonatkozó véges számú független kísérlet vagy megfigyelés (mérés) eredménye Mintavétel Mintavétel: a statisztikai sokaságból információszerzés céljából véletlenszerűen egyedi elemeket emelünk ki

Mintavételi és nem mintavételi hiba Adatgyűjtéshez kapcsolódó hibák: pl. definíciós hibák, nemválaszolási hibák, végrehajtási hibák – NEM MINTAVÉTELI HIBA Védekezési mechanizmus: alkalmazott technikák, technológiák fejlesztése A teljes sokaság megismeréséről való lemondás ára – MINTAVÉTELI HIBA Védekezési mechanizmus: olyan mintavételi eljárásokat keresünk, hogy ez a lehető legkisebb legyen A mintavételi hiba annál kisebb, minél nagyobb a minta.

Statisztikai módszertan ágai LEÍRÓ vagy DESKRIPTÍV statisztika Tömör, számszerű jellemzés: a megfigyelt adatok legjobb megértésére, bemutatására, összefoglalására törekszik. KÖVETKEZTETŐ statisztika Fő célja a mintából való következtetés, általánosítás a teljes sokaságra vonatkozóan.

Leíró statisztika Főbb területei: adatgyűjtés adatok ábrázolása adatok csoportosítása, osztályozása adatokkal végzett egyszerűbb aritmetikai műveletek eredmények megjelenítése

Leíró statisztikai mutatószámok Helyzetmutatók, középértékek: Az eloszlás helyzetét egyetlen, az adatokkal azonos mértékegységű számértékkel jellemzik Ingadozásmutatók: Az adathalmaz szóródása, változékonysága Az adatok egymás közötti különbségei Kitüntetett értéktől való eltérés, ingadozás valamilyen középérték körül

Helyzetmutatók (középértékek) Csoportosításuk: Helyzeti középértékek: az adatok közötti elhelyezkedésüknél fogva jellemzik a vizsgált gyakorisági eloszlás helyzetét medián, módusz Számított középértékek: az adatokkal kapcsolatos számszerű összefüggésük révén jellemzik a vizsgált gyakorisági eloszlás helyzetét számtani átlag, mértani átlag, négyzetes átlag, harmonikus átlag Elvárások: Közepes helyzetűek Tipikusak Egyértelműen meghatározhatóak Könnyen értelmezhetőek

Medián me annak a legelső osztályköznek a sorszáma, amelyre igaz, hogy helyzeti középérték mutató a változó azon számértéke, amelynél az összes előforduló számérték fele kisebb, fele pedig nagyobb, így a rangsorba állított sokasági számértékeket két egyenlő gyakoriságú osztályra bontja Becsülhető osztályközös gyakorisági sorból is: Előnye: Mindig egyértelműen meghatározható Érzéketlen a szélsőértékekre, és nem függ a többi ismérvértéktől sem. Hátránya: Nem használható, ha az adatsorban sok az egyforma ismérvérték Egyéb tulajdonsága: A mediánt tartalmazó osztály bal végpontja. A mediánt tartalmazó osztály hossza. ha

Példa – diszkrét eset 6, 8, 4, 9, 7, 3, 5 3, 4, 5, 6, 7, 8, 9 Me=6 4, 9, 7, 8, 11, 5 4, 5, 7, 8, 9, 11 Me=7+8/2=7,5 760 adat  380. és 381. adat számtani átlaga a medián Medián értéke: 3

Példa – folytonos eset 99 adat  50. adat a medián (49 ennél kisebb, 49 ennél nagyobb) Medián értéke: 1,132%

N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály: Példa – folytonos eset Medián becslése osztályközös gyakorisági sorból: No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen N/2=49,5  a mediánt tartalmazó osztály az ötödik osztály: 0,00% ≤ x < 5,00%.

Módusz mo a legnagyobb gyakoriságú osztály(ok) sorszáma Hátránya: helyzeti középérték, a tipikus ismérvérték diszkrét ismérv esetén a módusz a leggyakrabban előforduló ismérvérték, folytonos ismérv esetén a gyakorisági görbe maximumhelye. Előnye: érzéketlen a szélsőértékekre, nem függ sem az összes, sem a kiugró ismérvértékektől. Hátránya: nem mindig határozható meg egyértelműen, és nem is mindig létezik nagy bizonytalansággal becsülhető Egyéb tulajdonsága: nyers módusz, osztályköz megválasztása Becsülhető osztályközös gyakorisági sorból is: A móduszt tartalmazó osztály bal végpontja. A móduszt tartalmazó osztály hossza. mo a legnagyobb gyakoriságú osztály(ok) sorszáma

Példa – diszkrét eset Az elégséges érdemjegy gyakorisága a legnagyobb (280 db), így a módusz értéke 2.

Példa – folytonos eset A legnagyobb gyakoriságú osztály az 5. sorszámú: 0,00% ≤ x < 5,00%. No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Szorgalmi feladat 1 pont Egy vasútvonalon egy hétig minden vonaton feljegyezték az utasok számát. Az eredményeket az alábbi táblázat tartalmazza: Számítsa ki a mediánt és a móduszt! Utasok száma Vonatok száma 𝟎≤𝑿<𝟑𝟎 6 𝟑𝟎≤𝑿<𝟔𝟎 12 𝟔𝟎≤𝑿<𝟗𝟎 28 𝟗𝟎≤𝑿<𝟏𝟐𝟎 30 𝟏𝟐𝟎≤𝑿<𝟏𝟓𝟎 16 𝟏𝟓𝟎≤𝑿≤𝟏𝟖𝟎 8

Medián és módusz becslése N/2=50, így a mediánt a negyedik osztály tartalmazza, hiszen 𝒇′ 𝟒 > 𝑵 𝟐 A móduszt a negyedik osztály tartalmazza, ennek a legnagyobb a tapasztalati gyakorisága Utasok száma fi fi’ 𝟎≤𝑿<𝟑𝟎 6 𝟑𝟎≤𝑿<𝟔𝟎 12 18 𝟔𝟎≤𝑿<𝟗𝟎 28 46 𝟗𝟎≤𝑿<𝟏𝟐𝟎 30 76 𝟏𝟐𝟎≤𝑿<𝟏𝟓𝟎 16 92 𝟏𝟓𝟎≤𝑿≤𝟏𝟖𝟎 8 100 N

Számtani átlag számított középértékfajta az a szám, amellyel az átlagolandó számértékeket helyettesítve azok összege változatlan marad. Számítása: Előnye: bármely alapadathalmazból egyértelműen meghatározható, minden alapadatot felhasznál Hátránya: érzékeny a szélsőértékekre  nyesett átlag Tulajdonsága: 𝑿 𝒎𝒊𝒏 ≤ 𝑿 ≤ 𝑿 𝒎𝒂𝒙 !!!

Számtani átlag Egyéb fontos tulajdonsága: minimális, ha

Példa – diszkrét eset

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos példa osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Harmonikus átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok reciprokainak összege változatlan marad Alkalmazása: ha az értékek reciprokainak összege értelmezhető, leíró statisztikai viszonyszámok és indexszámítás

Mértani átlag számított középértékmutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok szorzata változatlan marad Alkalmazása: ha az értékek szorzata értelmezhető, illetve az átlagolandó értékek exponenciálisan nőnek vagy csökkennek az időbeli fejlődés átlagos ütemének vizsgálatakor Pl. populációk egyedszáma idősor-elemzés

Négyzetes átlag számított középérték-mutató, az a szám, amellyel az átlagolandó értékeket helyettesítve azok négyzetösszege változatlan marad Hátránya: a kiugróan magas értékekre érzékenyen reagál Alkalmazása: ha az előjeleknek nincs jelentősége szórásszámítás

Kvantilisek a rangsorban olyan osztópontok (osztályhatárok), amelyek egyenlő relatív gyakoriságokat fognak közre Az Xi/k i-edik k-ad rendű kvantilis az a szám, amelynél az összes előforduló ismérvértékek i/k-ad része kisebb, (1-i/k)-ad része pedig nagyobb, ahol k≥2 és i=1, 2 ,…, k-1.

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – Kvantilisek becslése No. Osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó Határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   Összesen

Ingadozásmutatók (szóródásmutatók) Csoportosításuk: Az adathalmazban szereplő értékek változékonyságát az egyes értékek egymás közötti különbségein, vagy egyes értékeknek egy kitüntetett értéktől (középérték) való eltérésein keresztül ragadja meg. Mértékegységüket tekintve: Abszolút mutatók: mértékegysége megegyezik az alapadatokéval Relatív mutatók: mértékegység nélküli [%]

Terjedelem Interkvantilis terjedelem a szóródást az adathalmazban szereplő legnagyobb és legkisebb adat különbségeként jellemzi abszolút ingadozásmutató Előnye: a könnyű számítás Hátránya: értéke csak a két legszélsőségesebb ismérvértéktől függ, amelyeket sokszor a véletlen szeszélyeinek köszönhetünk. Interkvantilis terjedelem csökkenti a véletlen szélsőértékeket (legkisebb és legnagyobb értéket) alakító szerepét az adathalmaz két szélső k-adrendű kvantilisének különbsége

-15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

(Korrigált) tapasztalati szórás a szóródást az alapadatoknak egy kitüntetett értéktől (számtani átlagtól) való eltérésein keresztül méri, abszolút ingadozásmutató A szórás az egyes Xi ismérvértékek átlagtól vett di eltéréseinek négyzetes átlaga: azt mutatja, hogy az egyes értékek átlagosan mennyire térnek el a számtani átlagtól. Olyan átlagos hiba, amit akkor követünk el, ha minden alapadatot a számtani átlaggal helyettesítünk. A számtani átlag tulajdonsága szerint ez a hiba minimális.

Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől. Példa – diszkrét eset Az érdemjegyek átlagosan 1-gyel térnek el az átlagos értéktől.

Példa – folytonos eset -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen

Szorgalmi feladat 1 pont Egy vasútvonalon egy hétig minden vonaton feljegyezték az utasok számát. Az eredményeket az alábbi táblázat tartalmazza: Számítsa ki a szórást illetve a korrigált tapasztalati szórást! Utasok száma Vonatok száma 𝟎≤𝑿<𝟑𝟎 6 𝟑𝟎≤𝑿<𝟔𝟎 12 𝟔𝟎≤𝑿<𝟗𝟎 28 𝟗𝟎≤𝑿<𝟏𝟐𝟎 30 𝟏𝟐𝟎≤𝑿<𝟏𝟓𝟎 16 𝟏𝟓𝟎≤𝑿≤𝟏𝟖𝟎 8

Szórás, korrigált tapasztalati szórás Számtani átlag meghatározása Eltérés-négyzetösszeg meghatározása Tapasztalati szórás Korrigált tapasztalati szórás

Átlagos abszolút eltérés (Δ) A szóródást az értékeknek egy kitüntetett értéktől való eltéréseire támaszkodva jellemzi abszolút ingadozásmutató Az egyes ismérvértékek és a számtani átlag különbségeinek abszolút értékeiből számított számtani átlag

Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól. Példa – diszkrét eset Az érdemjegyek átlagosan 0,81-gyel térnek el az átlagtól.

Példa – folytonos eset Az egyes hozamadatok átlagosan 5,3776%-kal térnek el a számtani átlagtól -15,778% -10,216% -4,881% -2,950% -0,414% 1,152% 2,533% 4,021% 6,182% 10,053% -15,731% -7,927% -4,857% -2,902% -0,402% 1,320% 2,808% 4,223% 6,280% 10,292% -13,671% -7,188% -4,360% -2,616% -0,057% 1,698% 2,883% 4,480% 6,368% 10,699% -12,454% -6,569% -3,817% -2,173% 0,111% 1,836% 2,963% 4,667% 6,599% 10,947% -12,233% -6,192% -3,696% -2,072% 0,196% 1,946% 3,112% 4,917% 7,427% 11,520% -11,464% -6,113% -3,634% -1,857% 0,222% 1,999% 3,185% 5,203% 7,997% 12,038% -11,369% -6,110% -3,433% -1,713% 0,385% 2,072% 3,276% 5,398% 8,200% 13,104% -11,159% -5,564% -3,304% -1,247% 0,606% 2,119% 3,343% 5,447% 8,234% 14,878% -11,116% -5,170% -3,210% -0,669% 0,764% 2,161% 3,616% 5,612% 8,298% 15,066% -10,735% -5,098% -2,963% -0,505% 1,132% 2,372% 3,986% 5,956% 8,558%

Példa – folytonos eset No. osztály Osztály-köz fi fi’ gi [%] gi’ [%] Alsó határ Felső 1. -20% -15% -17,50% 2 2,02% 2. -10% -12,50% 9 11 9,09% 11,11% 3. -5% -7,50% 20 20,20% 4. 0% -2,50% 23 43 23,23% 43,43% 5. 5% 2,50% 32 75 32,32% 75,76% 6. 10% 7,50% 15 90 15,15% 90,91% 7. 15% 12,50% 8 98 8,08% 98,99% 8. 20% 17,50% 1 99 1,01% 100,00%   összesen Az egyes hozamadatok átlagosan 6,213%-kal térnek el a számtani átlagtól

Átlagos abszolút különbség (G) A szóródást az ismérvértékek egymás közötti különbségein keresztül méri, abszolút ingadozásmutató A minden lehetséges módon párba állított ismérvértékek különbségeinek abszolút értékéből számított számtani átlag. Kényelmetlen a számítása Alkalmazási területe: koncentráció elemzés

Példa Véletlenszerűen kiválasztunk 5 hallgatót, és kiszámítjuk a Gazdaságstatisztika tárgy 3 zh-ján elért eredményük átlagos abszolút különbségét. Az elért pontok: 45, 52, 76, 87, 92   45 52 76 87 92 7 31 42 47 24 35 40 11 16 5 Az 5 hallgató zh-n elért pontja átlagosan 25,8 ponttal tér el egymástól

Relatív szórás relatív ingadozásmutató az ismérvértékek átlagtól vett átlagos eltérése százalékos formában kifejezve a szórás és a számtani átlag hányadosa, csak pozitív értékű alapadatok esetében számítható: minél kisebb a relatív szórás, a számtani átlag annál jobban jellemzi az alapadatokat Alkalmazása: különböző sokaságok vagy ismérvek szóródásának összehasonlítására használják

Köszönöm a figyelmet! Árva Gábor