BERUHÁZÁSOK KOCKÁZATELEMZÉSE

Slides:



Advertisements
Hasonló előadás
B ERUHÁZÁSI DÖNTÉSEK II.. DCF módszerek speciális esetekben  Ha a döntés egy adott projekt elfogadásáról vagy elvetéséről szól, akkor az NPV, IRR, PI.
Advertisements

2016. tavaszSzármaztatott termékek és reálopciók1 III. Fedezeti ügyletek Határidős ügylet segítségével rögzíthető a jövőbeli ár –árfolyamkockázat kiküszöbölése.
A Z APV MÓDSZER DCF alapú értékelés  Valamilyen jövőbeli pénzáramok diszkontálása valamilyen tőkeköltséggel → érték  Hogyan közelítsük a pénzáramokat.
Származtatott termékek és reálopciók Dr. Bóta Gábor Pénzügyek Tanszék.
Származtatott termékek és reálopciók Dr. Bóta Gábor Pénzügyek Tanszék.
2013. tavaszSzármaztatott termékek és reálopciók1 Fedezeti ügyletek Határidős ügylet segítségével rögzíthető a jövőbeli ár –árfolyamkockázat kiküszöbölése.
Beruházási és finanszírozási döntések kölcsönhatásai 1.
Számvitel S ZÁMVITEL. Számvitel Hol tartunk… Beszámoló –Mérleg –Eredménykimutatás Értékelés – – – –2004- –Immateriális javak,
2016. tavaszSzármaztatott termékek és reálopciók1 II. Határidős árfolyamok A lejáratkor a határidős és az azonnali ár megegyezik. Milyen kapcsolat van.
Számvitel S ZÁMVITEL. Számvitel Ormos Mihály, Budapesti Műszaki és Gazdaságtudományi Egyetem, Hol tartunk…
1 Az önértékelés mint projekt 6. előadás 1 2 Az előadás tartalmi elemei  A projekt fogalma  A projektek elemei  A projekt szervezete  Projektfázisok.
Melyik számlaosztályban szerepelnek az alábbiak? a) Szállítók b) Vevők c) Anyagok d) Anyagköltség e) Pénztár f) Árbevétel g) ElÁBÉ h) Forgóeszközhitel.
2014. őszBefektetések I.1 Származtatott termékek Határidős ügyletek Csere (swap) ügyletek Opciók.
BEST-INVEST Független Biztosításközvetítő Kft.. Összes biztosítási díjbevétel 2004 (600 Mrd Ft)
Gazdasági jog IV. Előadás Egyes társasági formák Közkeresleti társaság, betéti társaság.
1 Számvitel alapjai Gazdálkodás:a társadalmi újratermelési folyamat szakaszainak (termelés, forgalom, elosztás, fogyasztás) megszervezésére, az ahhoz rendelkezésre.
Kockázat és megbízhatóság
Hiteltörlesztési konstrukciók
BERUHÁZÁSOK KOCKÁZATELEMZÉSE
Költség-haszon elemzés.
Valószínűségi kísérletek
Muraközy Balázs: Mely vállalatok válnak gazellává?
Adományok adózási kérdései
PÉLDÁK: Beruházás értékelés Kötvény értékelés Részvény értékelés.
Becslés gyakorlat november 3.
A FELÜGYELŐBIZOTTSÁG BESZÁMOLÓJA A VSZT
Értékpapír-piaci egyenes
Kiegészítő melléklet és üzleti jelentés
Mérleg, eredm., cf. – példa (I.)
Mezőgazdasági kisüzemek fejlesztése
Dinamikus beruh.gazd.-i szám.-ok (I.)
Főbb gazdasági mutatók, elemzések (I.)
V. Befektetői stratégiák opciós ügyletekkel
Kockázat és megbízhatóság
Üzleti gazdaságtan konzultáció
SZÁMVITEL.
Becsléselmélet - Konzultáció
SZÁMVITEL.
Konszolidáció Guzmics Zsuzsanna
BERUHÁZÁSI DÖNTÉSEK II.
SZÁMVITEL.
SZÁMVITEL.
Egyéb gyakorló feladatok (I.)
Kvantitatív módszerek
Gazdaságstatisztika Korreláció- és regressziószámítás II.
Tartalékolás 1.
A PDCA elv alkalmazása az információvédelmi irányítási rendszerekben 1
Kvantitatív módszerek
Pénzáramok összefoglaló példa (I.)
A VÁLLALKOZÁS 7. előadás.
Regressziós modellek Regressziószámítás.
CONTROLLING ÉS TELJESÍTMÉNYMENEDZSMENT DEBRECENI EGYETEM
Cash flow A vállalat működése, befektetései és pénzügyi tevékenysége által genarált pénzáramlásokat tartalmazó kimutatás. Az eredménykimutatásban és a.
Pénzügyi terv Feladatok.
Önköltségszámítás.
Munkagazdaságtani feladatok
Környezeti Kontrolling
1.1. TERMELŐI DÖNTÉS Termelés: saját jószágok átalakítása a meggazdagodás érdekében Termelő célja: maximális gazdagodás a termelésből Max (megtermelt jószágok.
TÁRGYI ESZKÖZÖK ELSZÁMOLÁSA
A VÁLLALKOZÁSOK VAGYONA
SZAKKÉPZÉSI ÖNÉRTÉKELÉSI MODELL I. HELYZETFELMÉRŐ SZINT FOLYAMATA 8
A szállítási probléma.
I. HELYZETFELMÉRÉSI SZINT FOLYAMATA 3. FEJLESZTÉSI FÁZIS 10. előadás
Binomiális fák elmélete
Termelési tényezők piaca
Munkagazdaságtani feladatok
Monopolisztikus verseny, Oligopólium
Termelési tényezők piaca
Termelési tényezők piaca
KOHÉZIÓS POLITIKA A POLGÁROK SZOLGÁLATÁBAN
Előadás másolata:

BERUHÁZÁSOK KOCKÁZATELEMZÉSE

Kockázat Kockázat: a várhatótól való eltérés lehetősége (pozitív és negatív is beleértve) A projekt teljes kockázata két részből tevődik össze: piaci kockázat (~makrogazdasági) és egyedi kockázat (~vállalat-specifikus) Az értékelés során számos feltételezéssel élünk, becsléseinket bizonytalanság övezi – érdemes (lehet) megvizsgálni ennek lehetséges hatásait Végső soron viszont mindig a várható NPV alapján döntünk! (Megjegyzés: becsléshez vs. pénzáramokhoz kapcsolódó bizonytalanság)

Érzékenység- és nyereségküszöb-elemzés (I.) Érzékenységelemzés: az egyes paraméterekben bekövetkező változások hogyan hatnak a projekt NPV-jére – egyetlen változónak sok lehetséges értékét tekintjük (az összes többi változó rögzítettsége mellett) Nyereségküszöb-elemzés: az egyes paraméterek esetében mekkora az a változás, amely veszélyezteti a projekt megvalósítandóságát – azaz: a paraméter milyen értéke mellett lesz NPV = 0 A változó eloszlásának ismeretében kiszámíthatjuk, hogy mekkora a valószínűsége, hogy a változó értéke pl. kisebb lesz, mint a küszöbhöz tartozó értéke Rávilágíthatnak a kritikus, ezáltal pontosabb becslést igénylő paraméterekre… …de nem számolnak a változók közötti korrelációval (pontosabban azok együttes valószínűség-eloszlásával [joint probability distribution])

Érzékenység- és nyereségküszöb-elemzés (II.)

Fedezetipont-elemzés (I.) ~nyereségküszöb-elemzés, DE: csak egyetlen paraméter: az értékesített mennyiség (árbevétel) Mi az a legalacsonyabb eladási forgalom, árbevétel, amely mellett a projekt még éppen nem veszteséges? Két fajtája: számviteli és pénzügyi/gazdasági fedezeti pont Számviteli fedezeti pont: a kibocsátásnak/értékesítési árbevételnek az a szintje, amely mellett az árbevétel az összes számviteli költségre fedezetet jelent Tehát ahol Árbevétel – Számviteli költségek = 0 Számítása (mennyiségre): Fix költség/(Egységár – Egységnyi változó költség) Ahol a termelés homogén (mert ott van értelme „egységnek”)

Fedezetipont-elemzés (II.) Számviteli fedezeti pont képletének levezetése: ÉNÁ AJR SZJR ÉCS ÜE (EBIT) Kamat = 0 AEE = ÜE TA (-) AE Ahol π: profit, TR: teljes bevétel, TC: teljes költség, FC: fix költség, VC: változó költség, Q: mennyiség, p: egységár, v: egységnyi változó költség. Kamatfizetéssel most nem foglalkozunk.

Fedezetipont-elemzés (III.) Pénzügyi/gazdasági fedezeti pont: az az értékesített mennyiség vagy árbevétel, amely mellett a befolyó pénzáram fedezetet jelent a gazdasági költségekre, azaz NPV = 0 Tehát ahol Árbevétel – Gazdasági költségek = 0 Ahol: Gazdasági költségek = Számviteli költségek + Tőke alternatíva költsége Számítása (mennyiségre): (Fix költség* + Beruházás EAC + Társasági adó)/(Egységár – Egységnyi változó költség) *: a Fix költségben nincs benne az ÉCS EAC-ban figyelembe van véve a tőke alternatíva költsége Itt már számviteli nyereség van, ezért társasági adó is releváns

Fedezetipont-elemzés (IV.) Gazdasági fedezeti pont képletének levezetése: Itt pénzáramokat kell tekinteni! (Az eredménykimutatás az indirekt levezetés és a társasági adó miatt szükséges.) EBIT*(1-TC) ÉCS (+) NFT ÁV hatása = 0 CAPEX = 0 FCFF (n>0) PVAF Ahol FC’: fix költségek ÉCS nélkül, PVAF: annuitás jelenérték-faktor. NFT és beruházások pénzáramhatásától most eltekintünk. Annuitás profilt feltételezünk.

Fedezetipont-elemzés (V.) Gazdasági fedezeti pont képletének levezetése – folyt.: EAC A számviteli fedezeti pontnál felírtak szerint: Megjegyzés: ÉCS = FCFF0/N (lineáris leírás, FCFF0 csak CAPEX), így EAC > ÉCS, mert: TA-t behelyettesítve, majd átrendezéssel: Szv. fedezeti ponthoz tartozó mennyiség Tőkeköltség és társasági adó miatti fedezetigény

Fedezetipont-elemzés (VI.) A gazdasági fedezeti pont > számviteli fedezeti pont, mert A kezdő beruházás éves átlagköltsége (EAC) a tőkeköltség figyelembe vétele miatt magasabb, mint az ÉCS Ahol NPV = 0, ott a projekt már számviteli értelemben nyereséges (árbevétel nagyobb, mert fedezi a tőkeköltséget is), ezért adófizetési kötelezettség jelentkezik, amire szintén fedezetet kell teremteni (Fix és változó költségek viszonya ~ működési áttétel ~ érzékenység a mennyiségre ~ kockázatosság) (Látjuk a fedezetipont-elemzések korlátait…)

Fedezetipont-elemzés (VII.) Példa: Egy 5 év időtartamú projektet az alábbi paraméteres eredménykimutatás jellemez minden évre (Q a mennyiség [db]): A kezdő FCFF pénzáram 5.000.000, ami egyben a lineáris ÉCS alapja is. (A hasznos élettartam is 5 év.) A nettó forgótőke állományváltozása minden évben zérus. A társasági adó alapja az AEE, mértéke 10%. A tőkeköltség minden évre 12%. Számítsuk ki a számviteli és a pénzügyi/gazdasági fedezeti pontot! (FCFF szemléletben) Értékesítés nettó árbevétele Q*15.000 Anyagjellegű ráfordítások 300.000 + Q*8.000 Személyi jellegű ráfordítások 200.000 + Q*3.000 Értékcsökkenési leírás Q-tól független, állandó

Fedezetipont-elemzés (VIII.) Számviteli: Egységár (p) = 15.000 [/db] Egységnyi változó költség (v) = 8.000 + 3.000 = 11.000 [/db] Fix költség (FC) = 300.000 + 200.000 + 1.000.000 = 1.500.000 ÉCS = 5.000.000/5 = 1.000.000 Fedezeti pont = 1.500.000/(15.000 – 11.000) = 375 [db] Gazdasági: PVAF = 1/0,12 – 1/(0,12*1,125) ≈ 3,6048  EAC = 5.000.000/3,6048 ≈ 1.387.040 (Fix költség ÉCS nélkül (FC’) = 1.500.000 – 1.000.000 = 500.000) Fedezeti pont = 375 + (1.387.040 – 1.000.000)/[(15.000 – 11.000)*(1 – 10%)] = 482,51  483 [db] (kerekítés!)

Szcenárió-elemzés Kevés változó kevés lehetséges értékeit tekintjük (egyszerre) Egy projekt „forgatókönyvei” Figyelembe veszi a változók közötti korrelációt Példa: új terméket akarunk piacra dobni A szcenárió 20% eséllyel PV bevételek: 200 PV költségek: 100 NPV = 100 B szcenárió 50% eséllyel PV bevételek: 250 PV költségek: 50 NPV = 200 C szcenárió 30% eséllyel PV bevételek: 450 PV költségek: 100 NPV = 350 A várható NPV (amit egyébként is számolunk!): 0,2*100 + 0,5*200 + 0,3*350 = 225

Szimulációs analízis (I.) Sok változó sok lehetséges értékét tekintjük (egyszerre) Az egyes bemeneti változóknak itt a valószínűségi változó formáját használjuk Megbecsüljük eloszlásaikat, korrelációs kapcsolataikat Így a kimenetet (pl. az NPV-t) is valószínűségi változó formában meghatározhatjuk Pl. meg tudjuk határozni az NPV eloszlását, ebből következtetéseket vonhatunk le – pl. mekkora valószínűséggel lesz az NPV pozitív? Analitikusan ez legtöbbször meglehetősen bonyolult lenne Monte Carlo szimuláció: az egyes változókra az eloszlásuknak megfelelően nagyszámú véletlen értéket generálunk (számítógéppel), így közelítjük a keresett kimenetet

Szimulációs analízis (II.) A folyamatot ábrázolva:

DCF-et kiegészítő módszerek (I.) DCF alapú értékelés vs. „stratégiai alapú” értékelés DCF statikus döntési helyzetet feltételez: „Most eldöntjük, és úgy lesz”… A megvalósításról/elutasításról szóló döntés egy adott pillanatra érvényes A beruházás élettartama alatt nincs további döntés, az elkezdett beruházást végigviszik …nem veszi figyelembe a menedzsment beavatkozási lehetőségeit, a döntések rugalmasságát… Pl. leállítani a projektet, ha rosszul alakulnak a dolgok; kibővíteni a projektet, ha jól alakulnak a dolgok; kivárni a projekt indításával; stb. …melyeknek értéke van → alulbecsüljük a projekt értékét → Reálopciók (és döntési fák)

DCF-et kiegészítő módszerek (II.) Opciók – alapvetően egy lehetőség egy tranzakcióra (pl. adás/vétel) megadott feltételekkel Lehívhatóság szerint Európai opció: csak megadott idő múlva Amerikai opció: a megadott időn belül bármikor A tranzakció típusa szerint Eladási (put) opció: eladási lehetőség Vételi (call) opció: vételi lehetőség Az opció kiírója: aki vételi vagy eladási kötelezettséget vállal Kötési ár: előre rögzített, ezen lehet eladni/venni Opciós díjat is kell fizetni a kiírónak

DCF-et kiegészítő módszerek (III.) Opcióra példa: Egy év múlva akarunk venni olajat, de nem tudjuk, hogyan alakul majd az ár Kötünk egy európai vételi opciót, mondjuk 100 USD kötési áron Tehát egy év múlva vehetünk 100 USD-ért olajat, függetlenül attól, hogy akkor épp mennyi a piaci ár Ezért a lehetőségért persze opciós díjat fizetünk Ha a lehíváskori piaci ár > 100 USD, akkor élünk az opcióval és nyerünk, mert olcsóbban vehetünk a piacinál Ha a lehíváskori piaci ár < 100 USD, akkor nem élünk az opcióval, mert megéri inkább a piacon venni A mennyiségek persze előre rögzítettek (kontraktus(méret)) Az opciók értékelése meglehetősen bonyolult…

Reálopciók – példa 1 (I.) Piacra dobnánk egy új terméket, amiből évi 72 bevételre számítunk, örökjáradék jelleggel, a beruházási összeg 200, a diszkontráta 20% Tegyük fel, az első év végén kiderül, a termék sikeres-e vagy sem 70%, hogy sikeres, ekkor a bevétel 90 végig 30%, hogy sikertelen, ekkor a bevétel csak 30 végig Az első év végén, ha akarjuk, leállíthatjuk, eladhatjuk a gépeket, amikért 180-at kaphatunk Hogyan módosítja ez a beavatkozási lehetőség a projekt megítélését?

Reálopciók – példa 1 (II.) Négy alternatíva vizsgálata: Sikeres, és Folytatjuk: Leállítjuk: Sikertelen, és 1 2 3 … -200 90 NPV = -200 + 90/0,2 = = 250 > 1 2 3 -200 90 + 180 = 270 NPV = -200 + 270/1,2 = = 25 1 2 3 … -200 30 NPV = -200 + 30/0,2 = = -50 > 1 2 3 -200 30 + 180 = 210 NPV = -200 + 210/1,2 = = -25

Reálopciók – példa 1 (III.) Tehát a várható NPV opcióval: NPV = 250*70% + (-25)*30% = 167,5 A várható NPV opció nélkül: NPV = -200 + 72/0,2 = 160 (Vegyük észre, hogy E(F) = 90*70% + 30*30% = 72) Az opció értéke tehát: 167,5 – 160 = 7,5

Reálopciók – példa 2 Ugyanaz, mint Példa 1, csak a beruházási összeg 400, a visszanyerhető összeg 360 Várható NPV opció nélkül: -40 Várható NPV opcióval: 12,5 Mekkora az opció értéke? (52,5) Mi a tanulság? Az opció lehetőség, mindig (pozitív) értéke van Figyelmen kívül hagyásával elvethetünk jó projekteket