Előadást letölteni
Az előadás letöltése folymat van. Kérjük, várjon
1
KINEMATIKAI FELADATOK
2
Egyenesvonalú egyenletes mozgás
Elmozdulás x= x2- x1 Átlagsebesség va= x/t Pillanatnyi sebesség v(t) =dx/dt
3
1.feladat Egy vízmelegítő percenként10 liter vizet enged át. Hány m/s sebességgel folyik ki a víz a 2 cm2 keresztmetszetű csapból?
4
2.)feladat Egy kerékpáros dimbes-dombos vidéken közlekedik. Valahányszor felfelé halad sebessége 10km/h, lefelé menetben pedig 40km/h. Mekkora az átlagsebessége, ha a felfelé és a lefelé megtett utak összege pontosan ugyanannyi? Adatok: fel és lefele az út azonos: s1= s2= s emelkedőn a sebesség: v1=10 km/h lejtőn lefele a sebesség: v2=40 km/h Megoldás:
5
Az átlagsebesség
6
3.feladat Egy tehervonat 36 km/ h sebességgel halad. Egy lőfegyverrel átlőnek a vagon oldalán A kimeneti nyílás 5 cm-rel van eltolódva a menetiránnyal ellentétes bemeneti oldalhoz képest és a vagon szélessége 2,5m. Mekkora sebességgel repült a lövedék?. vvonat=36 km/h= 10 m/s nyílás távolság l=5 cm kocsi oldalfalának távolsága s= 2,5 m Kérdés: mekkora a lövedék sebessége?
7
4.)feladat Egy expressz vonat 162 km/h nagyságú sebességgel halad egy hosszú fallal párhuzamosan. Egy utas elsüt egy pisztolyt, és a visszhangot 3s-mal később hallja. A hang sebessége 340 m/s. Milyen távol van a fal a síntől? (338,7 m) Adatok: A vonat sebessége vv= 162 km/h =45 m/s A hang sebessége h =340 m/s A kiáltás és az észlelés közötti idő t= 3 s. Megoldás: 3s alatt a vonat által megtett út a hang által megtett út A hang és a vonat útja egyenlő oldalú háromszöget alkot, mely felbontható derékszögű háromszögekre, melynek egyik befogója a vonat által megtett út fele (h/2), az átfogója a vonattól a falig megtett hangút (l, természetesen a falról visszaverődve ugyanolyan utat tesz meg), a másik befogó a sín és fal távolsága (s).
9
A derékszögű háromszögre alkalmazva a Pythagoras tételt, a sín és a fal távolsága meghatározható.
10
5.feladat Egy pont az s=10t2 függvény szerint mozog. Határozza meg az átlagsebességet a 2-3 s közötti időtartamra, a 2- 2,1 s közötti időtartamra, valamint a jellegzetes pontok pillanatnyi sebességét. Adott: Kérdés: s=10t2 t1=2 s t2=2,1 s t3=3 s Megoldás: Az első pontig megtett út A további távosságok: s2= 44,1 m, s3= 90 m.
11
Pillanatnyi sebesség:
12
Változó mozgás (gyorsulás)
Átlag gyorsulás Pillanatnyi gyorsulás
13
Kinematikai egyenletek a= konstans gyorsulásnál
14
(Űrhajós, toll)
15
Szabadesés: g= 9,81 m/s 1. példa
Kezdősebesség nélkül leejtünk egy labdát. Hol lesz a labda, amikor a sebessége 4,9 m/s lesz. (lefele mutató koordináta rendszert alkalmazunk.) v0 x Adott: v0= 0m/s v1 =4,9 m/s g= 9,81 m/s2 Kérdés: y1= ? v y1 g y MEGOLDÁS
16
2. példa Egy labdát függőlegesen v0= 20 m/s kezdősebességgel felfele dobunk. Milyen magasra emelkedik a labda? Mennyi idő múlva lesz a kezdeti helyzete alatt 25 m-rel és mennyi lesz a sebessége? v1=0 m/s y1= ? m y g =-9,81 m/s2 v0=20 m/s y0=0 m x Kérdés: a) y1= ? b) t2= ? v2= ? Adott: y0 = 0 m v0 = 20 m/s y2 = -25 m y2 = -25 m v2 =? m/s t2 = ? s
17
Megoldás: a) b/1)
18
b/2)
19
Hajítások 1)Példa Egy lövedéket 330 m/s vízszintes irányú kezdősebességgel egy 80 m magas sziklatetejéről lőnek ki. a.) Mennyi ideig tart amíg a lövedék a föld felszínére érkezik? b.)A szikla aljától milye távolságra fúródik a földbe? Mekkora a becsapódás sebessége?
20
3.)Egy h=20 m magas torony tetejéről vízszintes irányba vx=3m/s kezdősebességgel eldobunk egy m=1,2 kg tömegű tömegpontot
21
a). A torony tövétől milyen messze csapódik be a tömegpont. b)
a) A torony tövétől milyen messze csapódik be a tömegpont? b) Mennyi idő múlva csapódik be a tömegpont? c) Mekkora lesz a tömegpont mozgási energiája?
23
2) példa Egy lövedéket a vízszinteshez képest φ=550 szögben v0= 50 m/s sebességgel lövünk ki. A lövedék leszálló ágában a kilövés helyétől 60 m-rel magasabban csapódik be. Mennyi ideig repült a lövedék? Mennyi a kilövés helyétől a becsapódás távossága ? Mennyi a becsapódás sebessége ? y x
24
Adott: v0= 50 m/s v0x= v0 cosα= állandó v0y= v0 sinα α= 550 x0= 0 y0= 0 y3= 60 m g= 9,81 m/s2 Kérdés: t3= ? x3= ? v3= ? φ= ? Megoldás: a) Repülési idő:
25
t4-1=1,89s hamis, mert a felszálló ág 60m magasságának időtartamát jelzi.
b) x3 vízszintes repülési távolság
26
c) Becsapódási sebesség
Hasonló előadás
© 2024 SlidePlayer.hu Inc.
All rights reserved.