Hasonlóság modul Ismétlés.

Slides:



Advertisements
Hasonló előadás
ROMBUSZ TÉGLALAP NÉGYZET.
Advertisements

Telepítő programok Euklides 2.4 (Geometriai szerkesztőprogram)
PARALELOGRAMMA TULAJDONSÁGAI
A háromszög elemi geometriája és a terület
Geometriai transzformációk a felsőtagozaton
Matematika és módszertana
Derékszögű hármasszöglet és távolságmérő Összeállította: ifj. Zátonyi Sándor, Békéscsaba, 2008.
Geometriai transzformációk
Függvények Egyenlőre csak valós-valós függvényekkel foglalkozunk.
Szerkessz háromszöget, ha adott három oldala!
Geometriai Transzformációk
Geometriai transzformációk
Vektormező szinguláris pontjainak indexe
Háromszögek hasonlósága
Függvénytranszformációk
Hasonlósági transzformáció
A hasonlóság alkalmazása
Thalész tétel és alkalmazása
Párhuzamos egyenesek szerkesztése
Szimmetrikus Programozás, AZ ALAPOK
Transzformációk kucg.korea.ac.kr.
Elemei, tulajdonságaik és felosztásuk
Deltoid.
FELADAT: Adott az ABCD téglalap. Bizonyítsd be, hogy az ABC  egybevágó a ACD -el. D C A B.
ABC   A1B1C1 .
Háromszögek felosztása
3. Vetületi ábrázolások számítási eljárásai
A háromszögek nevezetes vonalai
SzTE JGYTFK Matematika Tanszék
Függvények.
A szinusz és koszinuszfüggvény definíciója, egyszerű tulajdonságai
Szögfüggvények általánosítása
MATEMATIKA GEOMETRIAI TRANSZFORMÁCIÓK: Egybevágósági transzformáció
Thalész tétel és alkalmazása
Szögek és háromszögek.
Háromszög nevezetes vonalai, körei
16. Modul Egybevágóságok.
A háromszög elemi geometriája és a terület
Geometriai transzformációk
NEMZETI TANKÖNYVKIADÓ Panoráma sorozat
Transzformációk egymás után alkalmazása ismétlés
Transzformációk Szirmay-Kalos László. Transzformációk (x,y) (x’,y’) = T(x,y) l Tönkre tehetik az egyenletet l Korlátozzuk a transformációkat és az alakzatokat.
Matematikai tesztelő program
Geometriai alapismeretek
3. Vetületi ábrázolások számítási eljárásai
Geometriai transzformációk
A háromszög középvonala
2. Koordináta-rendszerek és transzformációk
Szögek, háromszögek, négyszögek és egyéb sokszögek, kör és részei.
HÁROMSZÖGEK EGYBEVÁGÓSÁGI TÉTELEI.
Fogalma,elemei, tulajdonságai, felosztása…
Síkidomok, testek hasonlósága
Hasonlósági transzformáció ismétlése
A befogótétel.
3.4. Perspektív ábrázolások
Digitális képanalízis
Bevezetés a számítógépi grafikába
Amit a háromszögekről tudni kell
Amit a háromszögekről tudni kell
TRIGONOMETRIA.
Miket tanultunk eddig? Háromszögek egybevágóságának négy alapesete - ez egyben a háromszög meg-szerkeszthetőségének négy alapesete Háromszög belső és külső.
Tengelyes tükrözés.
132. óra Néhány nemlineáris függvény és függvény transzformációk
óra Néhány nemlineáris függvény és függvény transzformációk
óra Eltolás tulajdonságai, párhuzamos szárú szögek
93. óra Transzformációk összefoglalása
Geometria 9. évfolyam Ismétlés.
Szécsi László 3D Grafikus Rendszerek 7. előadás
ELEMI GEOMETRIAI ISMERETEK
Szögfüggvények és alkalmazásai Készítette: Hosszú Ildikó Nincs Készen.
Előadás másolata:

Hasonlóság modul Ismétlés

Geometriai transzformáció Geometriai transzformációknak nevezzük a pont  pont függvényeket, amelyeket síkon is, és térben is értelmezhetünk. A függvényről tudjuk:  a sík minden pontjának van képe;  egy pontnak pontosan egy képe van. A tanult geometriai transzformációk néhány tulajdonsága:  távolságtartás;  párhuzamosságtartás;  szögtartás;  körüljárási irány tartás vagy fordítás;  illeszkedéstartás;  egyenestartás.

Egybevágóságok Egybevágóságoknak nevezzük a távolságtartó geometriai transzformációkat. Tengelyes tükrözés Középpontos tükrözés Egybevágóságok Eltolás Pont körüli forgatás Definíciók Tulajdonságok

Háromszögek egybevágósága A háromszögek egybevágóságának alapesetei: két háromszög egybevágó, ha… 1. oldalaik páronként egyenlők (a=a’, b=b’, c=c’ ); 2. két oldaluk és az általuk közbezárt szög páronként egyenlő (a=a’, b=b’,  = ’ ); 3. két oldaluk és a hosszabbikkal szemközti szög páronként egyenlő (a=a’, b=b’,  = ’ ); 4. egy oldaluk és a rajtuk fekvő két szög páronként egyenlő (a=a’,  = ’,  = ’ ).