A Biotechnológiai Tanszék oktatási anyaga

Slides:



Advertisements
Hasonló előadás
BIOTECHNOLÓGIA D MsC gyakorlat
Advertisements

FEHÉJE INTERAKCIÓN ALAPULÓ
A NUKLEINSAVAK MANIPULÁCIÓJA SORÁN HASZNÁLATOS ENZIMEK
A polimeráz láncreakció Gurbi Bianka március 4. Emelt Biotechnológiai Számítások.
DNS replikáció Szükséges funkciók Iniciáció
Elektroforézis Általában agaróz a hordozó
Génexpresszió más (nem-E.coli) prokariótában
DNS replikáció DNS RNS Fehérje
DNS replikáció DNS RNS Fehérje
DNS replikáció: tökéletes másolat osztódáskor
A DNS Szekvenálás 2008 Géntechnikák labor.
Mikronalalitikai kurzus aminosav analízis
- nem tudunk semmit - ismeretek a fehérje funkciójáról
A Biotechnológiai Tanszék oktatási anyaga
Fonalas fágok I. M13, f1 és fd fágok, genomjuk 98%-ban azonos  rekombinálnak egymással Az érett fágok genomja egyszálú cirkuláris DNS, a sejten belül:
Oligonukleotid szintézis
Rekombináns fehérjék termeltetési stratégiái
A NUKLEINSAVAK MANIPULÁCIÓJA SORÁN HASZNÁLATOS ENZIMEK
Bakteriális genom térképezés Készítette: Mlinarics Edina IV. Biológus Bioinformatika SZIT.
Az intergénikus régiók és a genom architektúrájának kapcsolata Craig E Nelson, Bradley M Hersh és Sean B Carrol (Genome Biology 2004, 5:R25) Bihari Péter.
Antibiotikumok fejlesztése a genomika segítségével
Strukturális genomika Gyakorlati feladatok. SNP-k és vizsgálatuk Mi az SNP?
Genome2D: bakteriális transzkriptóma megjelenítését szolgáló eszköz (szoftver) Csernetics Árpád Bioinformatika SZIT ápr. 18.
Molekuláris genetika Falus András.
Kedvenc Természettudósom:
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító.
génszabályozás eukariótákban
Génexpresszió (génkifejeződés)
Polimeráz láncreakció (PCR)
MUTÁCIÓ ÉS KIMUTATÁSI MÓDSZEREI
GAZDA GRAS: generally recognized as safe Intracelluláris / szekréció Proteázok Termelés, szekréció szinkronizálás Gazda kialakítása.
A λ bakteriofág +++. Kb db fág van a bioszférában Bakteriofágok vegetatív replikációs ciklusa.
Ahhoz, hogy dolgozni tudjunk égy adott génnel, vagy szekvenciával nagy mennyiségű DNS-re van szükségünk, ezért valamilyen módon „klónozni” kell, a gén.
Poszttranszlációs módosítások Készítette: Cseh Márton
Transzdukció Készítette: Őri Zsuzsanna Emese 2007.március 30.
Plazmidok Készítette: Vásárhelyi Miklós. : E. Coli jól használható genetikai kísérletekben: Genomja kicsi(4,2*10 6 bázispár, kb. ezrede az emberének)
Készítette: Leidecker Orsolya
Elektroporáció.
Készítette: Kiss László
2009. november 26. Transzgének expressziós profiljának felvétele Transzgének expressziós profiljának felvétele Kukoricabogár- és herbicid-rezisztens növények.
DNS amplifikáció pl . DNS szekvenálásnál nagy jelentősége van
FLUORESZCENS IN SITU HIBRIDIZÁCIÓ
Arabidopsis thaliana tip120 inszerciós mutáns jellemzése
A gélelektroforézis Alkalmazása: különböző molekulák (nukleinsavak, fehérjék) -méret szerinti elválasztását, -detektálását -mennyiségének meghatározását.
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
Génsebészet Cseh Zsófia.
Nukleinsavak kimutatása, szekvenálás
Gyógyszerként használt fehérjék előállítása
1, GÉNKÖNYVTÁRAK ALKALMAZÁSA
IN VITRO MUTAGENEZIS Buday László.
A P elemek mobilitásának szabályozása
A P elem technikák: enhanszerek és szupresszorok azonosítása
Sejtek genetikai módosítása (gének bevitele vagy eltávolítása)
Escherichia coli baktérium
Molekuláris klónozás a gyakorlatban. CRISPR/Cas rendszerek Adaptív bakteriális immunitás Idegen nukleinsavak ellen ( pl. vírusok) Ezek integrálása a genomba,
AFRIKAI HARCSA GENOM PROJECT Kovács Balázs 1, Barta Endre 2, Pongor Lőrinc 3, Uri Csilla 1, Keszte Szilvia 1, Patócs Attila 3, Müller Tamás 1, Orbán László.
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
Új molekuláris biológiai módszerek
Polimeráz Láncreakció:PCR, DNS ujjlenyomat
Molekuláris biológiai módszerek
Géntechnikák labor kiselőadás Készítette: Nagy Zsuzsanna
DNS replikáció DNS RNS Fehérje
Új molekuláris biológiai módszerek labor
Molekuláris biológiai módszerek
Új molekuláris biológiai módszerek
Proteomika, avagy a fehérjék „játéka”
Molekuláris biológiai módszerek
Új molekuláris biológiai módszerek
Molekuláris biológiai módszerek
Új molekuláris biológiai módszerek
Előadás másolata:

A Biotechnológiai Tanszék oktatási anyaga 1 előadás A Biotechnológiai Tanszék oktatási anyaga az alábbi internet címen érhető el: http://biotech.szbk.u-szeged.hu

A FEHÉRJÉK TÚLTERMELTETÉNEK ELŐNYEI   Fő ok: Ha egy fehérjére nagy mennyiségben van szükség, és a természetben csak kis mennyiségben fordul elő, vagy az eredeti sejtvonal nehezen kezelhető, belõle fehérje csak körülményesen nyerhető.   KÖZVETLEN FELHASZNÁLÁS IPARI, proteázok, szénhidrátbontó enzimek, lipázok, polimerázok,bioaktív peptidek, fehérjék, hormonok, farmakológiai, gyógyászati felhasználásra KUTATÁSI CÉLOKRA   biokémiai és biofizikai vizsgálati módszerek, 3 dimenziós röntgenszerkezet, mutációs analízis, FELTÉTEL: A felhasználás előtt igazolni kell, hogy az eredeti fehérje és a rekombináns megfelelője biológiailag ekvivalens

DNA RNA 1 U H 3 OH 2

Egyéb tisztítási módszerek DNS etanollal, izopropilalkohollal kicsapható Kromoszómális DNS nagy, makroszkopikus molekula kiemelhető   Minél nagyobb egy DNS, annál könnyebben törik. Kb. 20 kb – osnál nagyobb DNS erős fizikai behatásnak (vortexes kevertetés) nem tehető ki! Egyéb tisztítási módszerek   kromatográfia, - ioncserés DEAE (dietil-aminoetil) kötés alacsony, elúció magas sókoncentráció esetén A DNS savas  ionos kölcsönhatás hordozó - szilikagél alapú elválasztás magas sókoncentráció mellett felkötődik a DNS, alacsony sókoncentrációnál eluálódik

RNS tisztítása - CsCl sűrűséggradiens centrifugálás adott koncetrációjú CsCl oldat centrifugálás során grádienst képez, a DNS a saját sűrűségének megfelelő helyre vándorol és ott megáll. különböző konformációjú DNS-k szétválaszthatóak, nagy tisztaság RNS tisztítása RNS nagyon könnyen degradálódik, RNázok stabilak a tisztítás során RNáz mentesíteni kell mindent DEPC: dietil pirokarbonát

RNS tisztítása sok eltérő protokol, ma univerzálisan használható rendszer a guanidium isotiocianát-fenol-kloroform oldattal történő extrakció egy lépésben sejtfeltárás és szerves-vizes folyadék fázisú extrakció. A vizes fázis csak totál RNS-t tartalmaz ( és némi kromoszómális DNS szennyezést, DNázI kezeléssel eltávolítható guanidin és izotiociánsav sója

eukarióták esetén stabil poliA farok mRNS tisztítás eukarióták esetén stabil poliA farok AAAAAAAAA mRNS hordozó tRNS rRNS TTTTTTTTTT- magas só AAAAAAAAA mRNS TTTTTTTTTT- hordozó alacsony só AAAAAAAAA mRNS

DNS ELVÁLASZTÁSA ELEKTROFORÉZIS denaturáló nem-denaturáló lúgos, (DNS, agaróz) formaldehid, glioxál, DMSO (RNS, agaróz) urea (DNS, akrilamid) Nincs roncsoló ágens méret > 50 kb 100bp-50 kb < 1000 bp Mátrix agaróz agaróz 0.5- 2% poliakrilamid technika pulzáló gélelektroforézis hagyományos gélelektroforézis (5-20%) hagyományos LÁTHATÓVÁ TÉTEL: etídium bromid, interkaláló festék Þ nem-denturáló körülmények, elsőősorban duplaszálú DNS-t fest, de egyszálú nukleinsavakat is. A DNS 254 nm-en elnyel Þ energia a festékre Þ 590 nm-en emisszió, a festék maga 302 és 366 nm-en nyel el Lehet gélbe rakni, utófesteni, illetve a mintához adni. Érzékenység kb 10 ng Egyéb festékek, fluoreszkáló anyagok: pl. fluoreszcein, minden körülményközött radioaktivitás: minden körülmény között, 35S, 33P, 32P beta sugárzók .

DNS IZOLÁLÁSA GÉLBŐL - közös pont: először elektroforetikus úton elválasztjuk a DNS-t - a megfelelő sávot kivágjuk steril pengével AGARÓZ dialízis, dializáló hártyában, elektrodialízis a kapott DNS további tisztítása fenolos extrakcióval, alkoholos kicsapással, univerzális, széles mérettartomány - fagyasztásos módszer : a kivágott – DNS-t tartalmazó - agarózdarabot –80oC-on megfagyasztjuk az agarós szerkezete roncsolódik, ebből a DNS egy szűrőn keresztül centrifugálással kinyerhető további tisztítás szükséges, univerzális - kromatográfiás módszerek 6M NaI mellett a DNS 55oC-on (az agaróz megolvad) szilikagél felületére kötődik, a mátrix mosása után innen o55 C-on alacsony só(víz, TE) eluálható, majdnem univerzális, elég széles mérettartomány DEAE membránba futtatjuk a DNS-t, innen magassókoncentrációval (1.5M) magas hőmérsékleten eluálható nagy tisztaság, szűk, alacsony mérettartomány < 1.5 – 2 kb esetén jó a kitermelés POLIAKRILAMID (PAGE) a kivágott darabot passzív módon vagy elektromos térben eluáljuk majd töményítjük, ioncserésen tisztítjuk

DNS/ RNS MÉRÉSE Ez leginkább oligonukleotidok esetén használatos. A különböző nukleotidoknak 260 nm körül erős abszorbanciájuk van. Egyszálú DNS esetén: e(µmol * cm/cm3) bázis dA 15.4 dG 11.7 dC 7.5 dT 8.8 átlagosan e = 10 (µmol * cm)/cm3 Ez leginkább oligonukleotidok esetén használatos. Nagyobb egyszálú, kétszálú DNS-k, RNS-k esetén a bázisok kölcsönhatásamiatt a számítás módosul 1 cm-es küvettában 260 nm-en 1.0 az abszorbanciája 50 µg/ml kettősszálú DNS-t 33 µg/ml egyesszálú DNS-t 40 µg/ml egyesszálú RNS-t tartalmazó oldatnak A fehérjék 280 nm-en nyelnek el. Az A260nm/A280nm ará’ny a nukleinsav tisztaságára jellemző A260nm/A280nm  2  tiszta a preparátum A260nm/A280nm  1 - 1,5  sok a fehérje szennyezés Egyéb módszerek: fluoreszcein, kemilumineszcens festékekkel. Érzékenyebb, de fluorimétert igényel.

A NUKLEINSAVAK MANIPULÁCIÓJA SORÁN HASZNÁLATOS ENZIMEK RESTRIKCIÓS ENDONUKLEÁZOK II típus  Speciális célszekvenciát ismer fel és hasítja a DNS-t mindkét szálon a felismerési szekvenciában vagy annak környezetében pl. EcoRI Mg2+ kell Ez a típus az elterjedt

A NUKLEINSAVAK MANIPULÁCIÓJA SORÁN HASZNÁLATOS ENZIMEK RESTRIKCIÓS ENDONUKLEÁZOK Enzim Felismerőhely hossza Felismerő-hasítóhely Forrás organizmus AluI 4 AG/CT Arthrobacter luteus HphI 5 GGTGAN8/ Haemophilus parahaemolyticus EcoRI 6 G/AATTC Escherichia coli BamHI 6 G/GATCC Bacillus amyloliquefaciens Ragadós végeket adó hasítások (sticky end) 5' túlnyúló Sal I 6 5' G TCGAC 3' 3' CAGCT G 3' Streptomyces albis 3' túlnyúló Kpn I 6 5' GGTAC C 3' 3' C CATGG 5' Klebsiela pneumonia Tompa végű hasítások (blunt end) Hae III 4 5' GG CC 3' 3' CC GG 5' Haemophilus aegyptus

FEHÉRJE TÚLTERMELTETÉS SZEMPONTJÁBÓL Isoschisomers AtcI 6 5' GGTAC/C 3' KpnI 5' GGTAC/C 3'   XmaI 6 5' C/CCGGG 3' SmaI 5' CCC/GGG 3' Kompatibilis véget adó enzimek SalI 6 5' G/TCGAC 3' XhoI 5' C/TCGAG 3' FEHÉRJE TÚLTERMELTETÉS SZEMPONTJÁBÓL KITÜNTETT ENZIMEK AflIII 6 5' A/CPuPyGT 3'   BspHI 6 5' T/CATGA 3' NcoI 6 5' C/CATGG 3' NdeI 6 5' CA/TATG 3'

DNS METILÁZOK - dam metiláz (dezoxiadenin metiláz) 5’ GATC 3’ felismerő hely N6 pozícióban metilez adenin sok dam metiláz érzékeny enzim van pl. MboI, XhoI, egyenként ellenőrizni kell, érzékenység esetén - dam- törzs használata - nem érzékeny izoskizomer használata (ha van) (MboI - Sau3AI)

dcm metiláz (dezoxicitozin metiláz) 5’ CCAGG 3’ vagy 5’ CCTGG 3’, C5 pozícióban metilez - hasonlóképpen léteznek dcm metiláz érzékeny enzimek - megoldás ugyanaz, mint a dam esetén citozin Sok metiláz van még, hasonló felismerő kanonikus szekvenciával, mint a restrikciós enzimek pl. M. EcoRI metiláz

Polimerázok DNS függő DNS polimerázok RNS függő DNS polimerázok Templátfüggetlen DNS polimeráz DNS függő RNS polimeráz 5’  3’ polimeráz aktivitás DNS polimerázoknak primer (indítószekvencia) kell RNS polimerázoknak promóter

dNTP: dATP, dCTP, dGTP, dTTP DNS függő DNS polimerázok E. coli DNS polimeráz I aktivitásai: 5’ 3’ polimeráz 5’ 3’ 5’…pCpApGpTOH 3’ 3’…pGpTpCpApApCpGpGpTpTp… 5’…pCpApGpTpTPGpCpCpApAp… 3’ E. coli DNS polimeráz I dNTP: dATP, dCTP, dGTP, dTTP

E. coli DNS polimeráz I aktivitásai: 5’ 3’ exonukleáz E. coli DNS polimeráz I 5’ 3’ 5’ 3’ 5’CpApGpTpTPGpCpCpApAp… 3’ 3’GpTpCpApApCpGpGpTpTp… 5’ 5’ CpCpApAp… 3’ 3’…pGpTpCpApApCpGpGpTpTp… 5’ E. coli DNS polimeráz I 3’  5’ exonukleáz E. coli DNS polimeráz I 3’ 5’ 3’ 5’ 3’ 5’ 5’…CpApGpTpTPGpCpCpApAOH 3’ 3’…GpTpCpApApCpGpGpTpTp 5’ 5’…CpApGpTpT 3’ 3’…GpTpCpApApCpGpGpTpTp… E. coli DNS polimeráz I

E. coli DNS polimeráz I Klenow fragment és a T4 DNS polimeráz aktivitásai: 5’ 3’ 5’…pCpApGpTOH 3’ 3’…pGpTpCpApApCpGpGpTpTp… 5’…pCpApGpTpTPGpCpCpApAp… 3’ Klenow, vagy T4 polimeráz dNTP: dATP, dCTP, dGTP, dTTP 3’  5’ exonukleáz Klenow, vagy T4 polimeráz 3’ 5’ 3’ 5’ 3’ 5’ 5’…CpApGpTpTPGpCpCpApAOH 3’ 3’…GpTpCpApApCpGpGpTpTp 5’ 5’…CpApGpTpT 3’ 3’…GpTpCpApApCpGpGpTpTp… NINCS 5’ 3’ exonukleáz

DNS függő termofil DNS polimerázok

Klenow (fragment) polimeráz DNS függő DNS polimerázok 5’ 3’ polimeráz 3’ 5’ polimeráz 5’ 3’ exonukleáz DNS polimeráz I Van Klenow (fragment) polimeráz Nincs T4 DNS polimeráz Van, erős Taq polimeráz Van/nincs

Templát független DNS polimeráz

RNS függő DNS polimeráz

DNS jelölés, nick transzláció

DNS jelölés, random priming N: A,C,G,T (NNNNNN) denaturálás hibridizáció DNS polimeráz dNTP polimerizáció denaturálás Jelölt szálak

DNS függő RNS polimerázok

Klónozás fogalma ligálás vektor Egy általunk kiválasztott DNS darabot vektor segítségével gazdasejtbe juttatunk és ott felszaporítunk Szubklónozás: további kisebb darabok hasonló felszaporítása vektor Hasítás, A,B enzimekkel Hasítás, A,B enzimekkel A inszert A B ligálás B Transzformálás, felszaporítás, tisztítás Vektor: olyan nukleinsav hordozó, amellyel nukleinsavakat sejtbe lehet juttatni, Felhasználás: klónozás, fehérje termeltetés, genetikai manipulációk stb.

KÓNOZÁSBAN ÁLTALÁNOSAN HASZNÁLT VEKTORTÍPUSOK inszert méret példa plazmidok pUC18,19 < 10 - 15 kb fonalas fágok mp18, 19 < 5 - 10 kb fagemidek pBluescriptKS, SK± < 10 - 15 kb l fágok EMBL3,4 néhányszor 10 kb kozmidok pHC79 néhányszor 10 kb néhány 100 kb BAC, YAC pBAC108L, pYAC3 BAC, YAC: bacterial, yeast artificial chromosome PLAZMIDOK replikációs origo ORI rezisztencia marker Cirkuláris kettősszálú extrakromoszómális elemek

Egy ősi plazmid: pBR322

Magas kópiaszámú változat: pUC19

Inszertet tartalmazó klónok kiválasztása antibiotikum rezisztencia, ld. pBR3222, két antibiotikum, az egyik elromlik, ha inszert épül be, fáradtságos szurkálások, két antibiotikum rezisztencia gén szükséges kolónia hibridizáció, univerzális mindig használható plazmid tisztítás, térképezés restrikciós emésztéssel hosszú fáradtságos polimeráz láncreakció sejteken, kombinatorikus gyors ha nincs más szelekció kék fehér színszelekció, pozitív szelekciós vektorok, kondicionálisan letális gén a vektoron, az inszert beépül, elrontja a gént  megszűnik a letalitás auxotrofiát komplementáló génbe történő klónozás ugyanaz a probléma, mint az antibiotikumok esetén

Kolónia hibridizáció

LacZ a komplementáció F' plazmidon: defektív b- galaktozidáz gén, hiányzik 11- 41. aminosav közötti régió bevitt vektor: tartalmazza a lacZ szabályozó régiót és az 1-146 aminosavat a kettő együtt: aktív b – galaktozidáz  X-gal szubsztráttal kék telep a bevitt N-terminális fragmentben : polilinker régió (leolvasási keret marad) ebbe lehet klónozni fragmentumot, ha kis fragmentum és leolvasási keret nem romlik el  X-gal szubsztráttal kék telep, ha elromlik vagy nagy fragment  X-gal szubsztráttal fehér telep

PLAZMIDOK SEJTBE JUTTATÁSÁNAK MÓDJAI 1. Kémiai transzformálás Kompetens sejt: a DNS felvételére alkalmassá tett sejt A sejteket felnövesztés után centrifugáljuk speciális kétértékű kationokat (Ca2+, Mn2+) tartalmazó oldattal kezeljük, sejtfal permeabilitást növelő ágenst (DMSO) adunk hozzá transzformációs hatékonyság: transzformáns /µg DNS elvi szám a transzformációt£ 1 ng mennyiségű DNS-sel hajtjuk végre : normál érték: 106 – 108 nagyon jó: 109 a transzformáció hatékonyságát meghatározó tényezők: oldatok edények tisztasága, - sejtek növekedési sebessége, a növesztés fázisa, hőmérséklete hősokk hőmérséklete hossza permeabilizáló faktor a lineáris DNS transzformációs gyakorisága kb 2 nagyságrenddel alacsonyabb, mint a cirkulárisé egyéb fogások: spheroplast készítés ozmotikum jelenlétében és ezt transzformáljuk - a DNS-t liposzómába csomagoljuk transzfomálás előtt

Transzformálás hatékonyságát meghatározó tényezők II. hősokk hőmérséklete, hossza plazmid mérete tárolhatóság permealizáló ágens

Elektroporáció A sejteket felnövesztés után kis vezetőképességű, glicerines (nagy ellenállású  600 ) pufferben szuszpendáljuk   nagy feszültségű impulzust adunk rá kb 5 ms-ig transzformációs hatékonység 20 - 50 x jobb (1010/µg DNS) sejttípusonként optimalizálni kell maghatározó faktorok: - az oldat ellenállása - az impulzus nagysága, hossza - permeabilizáló, redox potenciált befolyásoló faktorok adagolása

KONJUGÁCIÓ Sejtből sejtbe történő DNS átadás lépései: párosodás: speciális kontaktus a donor és a recipiens között egy speciális sejtfelszíni ponton keresztül (pl. pilus) DNS átjuttatását közvetítő folyamatok, replikcáció (rolling circle, az egyik szál átjutása) konjugációs elemek donorból donort csinál az első ilyen a a szex faktor, F episzóma másik: IncP csoportba tartozó: RP4, RK2 plazmidok (szilárd fázishoz mobilizálható plazmidok a recipiensből nem lesz donor a plazmid tartalmazza a DNS processzáló apparátust, oriT, mob régió   tra gének, pilus: N-acetilált TraA

A DNS transzfer mechanizmusa a konjugáció során donor recipiens donor recipiens TraI 5’ 5’ TraI Töréspont, nick donor recipiens Egyszálú DNS kötő fehérje TraC primáz 5’ RNS primer Replikatív DNS polimeráz TraI

Mobilizálható vektorok Nem tartalmazzák a tra géneket, csak a transzferhez szükséges oriT-t tra gének: integrálva a kromoszómába, három komponensű konjugáció: sem a donor sejt sem a recipiens nem tartalmazza a transzferhez szükséges géneket, hanem egy harmadik sejt

Fonalas fágok I. M13, f1 és fd fágok, genomjuk 98%-ban azonos  rekombinálnak egymással Az érett fágok genomja egyszálú cirkuláris DNS, a sejten belül: RF, replikatív forma  ez alkalmas genetikai manipulációkra A fág genomjának 90%-a 10 fehérjét kódol, nagyobb intergenikus régió a VIII és a III gének illetve II és IV gének között, regulátor funkció A fág a szexpiluson keresztül fertőz, a DNS (+) szál jut be a sejtbe  ebből lesz kétszálú replikatív forma 15-20 perc, 100-200 kópia Nem öli meg a gazdasejtet, csak lassítja a növekedést VIII fehérje a fő strukúr protein, 2700 kópia, a III. számú fehérje a filament végén néhány kópiában Az RF forma képződése után transzkripció, transzláció, Replikáció: II fehérje töréspontot idéz elő, DNS polimeráz I polimerizál WC papír modell. a II. fehérje vagdossa egységnyi darabokra V. fehérje: egyszálú DNS kötő fehérje, represszálja a II gén expresszióját  kópiaszám kontroll

A fonalas fágok életciklusa

Egy fonalas fág térképe

Epitóp könyvtár készítése, fág display vektorok gVIII (vagy gIII) gén (NNN)x X : 6 vagy hosszabb

Egy példa: anthrax toxin inhibitor tervezése phage display technikával Az anthrax toxin érése, patogenezise, potenciális célpontok A (PA63) heptamert felkötjük egy oszlopra

Egy példa: anthrax toxin inhibitor tervezése phage display technikával II. TYWWLD ACCTATTGGTGGCTGGAT DNS izolálás, szekvenálás (NNN)x A (PA63)7 oszlopon kromatografáljuk elúció specifikus felkötődik átfolyó

Fagemidek: fonalas fágok és plazmidok hibridjei

a középső, centrális régió eltávolítható A  fágok általános felépítése  genetikai anyag: 40-50 kb duplaszálú lineáris DNS  fertőzéssel jut a sejtbe,  nagy hatékonyság  két életciklus: - lizogén: a fág genetikai anyaga beépül a kromoszómába, a sejt túlél - lítikus: érett fág képződése során a sejtek lizálnak elpusztulnak  a végeken ragadós. ún. ’cos’ végek bal kar 20 kb centrális régió 14 kb jobb kar 9 kb cos a középső, centrális régió eltávolítható EcoRI BamHI SalI

A lambda fág életciklusa

Lambda fág példák Helyettesítő/ replacement vektorok Inszerciós vektorok

A klónozás menete helyettesítő vektorok esetén A pakolódás feltétele, hogy a rekombináns gemon mérete a vad típus méretének 79 – 105 %- a lehet.

Génátvitel transzdukcióval baktériumokban bakteriális DNS-t is tartalmazó többnyire defektív fágok fág DNS intakt normál fág transzdukáló fág bakteriális fágfertőzés lizogén életciklus fág genom integrálódása a baktérium kromoszómájába a fág által hordozott bakteriális DNS beépülése rekombinációval

plazmidok és l fágok hibridjei Kozmidok: plazmidok és l fágok hibridjei fertőzéssel bejuttatható plazmidok

GÉNEK ELŐÁLLÍTÁSÁNAK STRATÉGIÁI Gének izolálása A megfelelő organizmus génkészletéből a kívánt régiót tartalmazó szakasz valamilyen módon való kinyerése elterjedtebb, általában gyorsabb, kevesebb munkát igényel (ha lehetséges) nem feltétlenül szükséges szekvencia információ, de nem árt, ha van a különböző organizmusok genom szekvenciái nagy segítséget jelenthetnek hátrány: kodon preferencia adott, nem tervezhető Gének szintézise Szintetikus oligonukleotidokból történő összeépítés kevésbé elterjedt a gén hosszától függően sok munkát igényelhet, a fehérje elsődleges szekvenciáját ismerni kell előny: tervezhető a biológia szabályainak figyelembevételével, az optimális kodon felhasználás a gazda sejthez igazítható, az optimális fehérje túltermeltetési tapasztalatok jobban kamatoztathatók

KÖNYVTÁRAK TÍPUSAI - genomiális   a teljes genomból készül, elvileg minden információt tartalmaz (pl. nem transzlálódó régió, szabályozó régiók, intronok) mind prokariótákból, mind eukariótákból - cDNS az aktívan termelődő mRNS-ekből készül csak az érett mRNS szekvenciáját tartalmazza (nincs intron szabályozó régió stb) csak eukariótákból expressziós a cDNS-eket ún. expressziós kazettába klónozzuk, ezáltal a kódolt fehérje (ha a mRNS kódol ilyet) aktívan termelődhet Követelmények a könyvtárakkal szemben - fedje le a teljes genomot, illetve mRNS populációt - ne legyen redundáns

in vitro pakolás: összekeverés l fágfehérje extraktummal GENOMIÁLIS KÖNYVTÁR KÉSZÍTÉSÉNEK SÉMÁJA hasító helyek bal kar jobb kar centrális régió emésztés részleges vagy 20-24 kb méretű teljes emésztés fragmentek bal kar jobb kar ligálás konkatamer in vitro pakolás: összekeverés l fágfehérje extraktummal A pakolódás feltétele, hogy a rekombináns gemon mérete a vad típus méretének 79 – 105 %- a lehet.

Bakteriális shot-gun könyvtár készítése E. coli transzformálás elektroporálás kromoszómális DNS nebulizátor 2-3,5 kb fragmentek végek tompítása defoszforilálás összetört DNS Preparatív gél elektroforézis

A mRNS-ekkel szemben támasztott követelmények cDNS könyvtár A mRNS-ekkel szemben támasztott követelmények  Integritás  A mRNS mérete, degradált-e Megoldás: denaturáló gélelektroforézis (várt méret 0.5 - 8 kb, a többség 1.5 -2 kb)    Lehet-e teljes hosszúságú cDNS-t szintetizáltatni Megoldás: elõzetes reverz transzkripció jelölt nukloetidokkal elektroforézis  Lehet-e nagy molekulasúlyú fehérjéket in vitro szintetizálni Megoldás: in vitro transzláció jelölt aminosavakkal  A kérdéseses fehérjét tudjuk-e szintetizáltatni Megoldás: in vitro transzláció + immunoprecipitáció

A cDNS könyvtár mérete  A kérdéses mRNS előfordulási gyakorisága   10000 - 30000 különböző mRNS emlős sejtekben  nagy gyakoriságú 50 - 90 %, pl. globin nem problematikus  kis gyakoriságú  0.5 % nagy könyvtárat kell készíteni, és a detektálás is gond   N = ln(1-P) / ln(1-1/n) N: a szükséges klónok száma a könyvtárban, P: annak a valószínûsége, hogy a keresett klón benne legyen a könyvtárban, 1/n: az a mRNS frakció, ami 1 db keresett mRNS-t tartalmaz immunoprecipitált in vitro transzlált termék/ összes transzlált termék pl. 14 molekula/sejt,  1/n = 37000, P= 0.99, N= 170000

cDNS-könyvtár készítése primer adapter módszerrel

cDNS-könyvtár készítése

Szubsztraktív hibridizáció nem indukált minta, mRNS tisztítás indukált minta, mRNS tisztítás AAAAAAAAA 3' 5' TTTTTTTTT biotin reverz transzkripció B RnázH immobilizált streptavidin SA cDNS könyvtár csak indukált mRNS átfolyó cDNS, jelölés hibridizáció

RENDELKEZÉSRE ÁLLÓ VAGY SZÜKSÉGES INFORMÁCIÓK A KERESETT FEHÉRJÉRŐL, ILLETVE GÉNJÉRŐL - nem tudunk semmit - ismeretek a fehérje funkciójáról csak fenotípus alapján jellemezhető mutagenezis (transzpozon) kromoszomális séta van tisztított fehérje fehérje funkció tesztelhető expressziós könyvtárak fehérje szekvenálás DNS próba tervezés ellenanyag termeltetés már van ilyen fehérje illetve gén más típusú sejtekből heterológ próba használata könyvtárak átvizsgálásához EGYÉB   pl. ha a fehérje szabályozása ismert  szubsztraktív hibridizáció - számítógép, adatbankok genom szekvenálások

POZITÍV KLÓNOK KÜLÖNBÖZŐ KÖNYVTÁRAKBÓL VALÓ KIVÁLASZTÁSÁRA SZOLGÁLÓ MÓDSZEREK  kolónia vagy plakkhibridizáció, jelölt DNS-sel DNS próba előállítása: - szintetikus (degenerált) oligonukleotidok - megfelelően választott primerekkel elôállított PCR fragment - izolált DNS fragment (lehet heterológ is)   Jelölési módszerek - radioaktív vagy nemradioaktív - 5' foszforilálás, vagy 3' végen feltöltéses végjelölés vagy terminális transzferázzal, "nick-transzláció", "random priming", PCR honnan lehet próbánk: a gén már ismert, legalábbis egy darabon heterológ próba: más mikroorganizmusokból már ismert hasonló géne van tiszított fehérjénk  fehérje szekvenálás  DNS próba tervezés reverz transzlációval

Kodon felhasználási preferencia – táblázat Egy példa AmAcid Codon Number /1000 Fraction Gly GGG 208.00 14.99 0.17 Gly GGA 70.00 5.04 0.06 Gly GGT 117.00 8.43 0.10 Gly GGC 827.00 59.59 0.68 Glu GAG 476.00 34.30 0.60 Glu GAA 318.00 22.91 0.40 Asp GAT 297.00 21.40 0.35 Asp GAC 558.00 40.20 0.65 Val GTG 386.00 2 7.81 0.43 Val GTA 40.00 2.88 0.04 Val GTT 65.00 4.68 0.07 Val GTC 412.00 29.69 0.46 Ala GCG 630.00 45.39 0.40 Ala GCA 142.00 10.23 0.09 Ala GCT 108.00 7.78 0.07 Ala GCC 687.00 49.50 0.44 Arg AGG 35.00 2.52 0.04 Arg AGA 12.00 0.86 0.01 Ser AGT 24.00 1.73 0.04 Ser AGC 232.00 16.72 0.3 Lys AAG 465.00 33.50 0.86 Lys AAA 76.00 5.48 0.14 Asn AAT 151.00 10.88 0.37 Asn AAC 252.00 18.16 0.63 Met ATG 376.00 27.09 1.00 Ile ATA 19.00 1.37 0.03 Ile ATT 117.00 8.43 0.17 Ile ATC 570.00 41.07 0.81 Thr ACG 228.00 16.43 0.33 Thr ACA 29.00 2.09 0.04 Thr ACT 41.00 2.95 0.06 Thr A CC 383.00 27.60 0.56 Trp TGG 250.00 18.01 1.00 End TGA 37.00 2.67 0.74 Cys TGT 21.00 1.51 0.11 Cys TGC 167.00 12.03 0.89 End TAG 5.00 0.36 0.10 End TAA 8.00 0.58 0.16 Tyr TAT 213.00 15.35 0.56 Tyr TAC 170.00 12.25 0.44 Leu TTG 71.00 5.12 0.06 Leu TTA 4.00 0.29 0.00 Phe TTT 8 6.00 6.20 0.14 Phe TTC 542.00 39.05 0.86 Ser TCG 204.00 14.70 0.31 [gbbct]: 50 CDS's (13879 codons)

cDNS-ből készült expressziós könyvtárból - Immunológiai detektálás poli- vagy monoklonális ellenanyaggal   - Aktivitás mérés (csak bizonyos szerencsés esetekben)   - Valamilyen módon jelölt liganddal (ha van a keresett fehérjének)

ÉLESZTŐ KÉT HIBRID RENDSZER fehérje-fehérje kölcsönhatáson alapuló szelekció   GAL4 transzkripciós aktivátor aktivátor régió (AR) DNS kötő domén (DKD) lacZ GAL4 kötő hely DKD Protein X Protein Y AR lacZ GAL4 kötő hely DKD Protein X AR Protein Y kölcsönhatás esetén: kék telepek

BAKTERIÁLIS KÉT HIBRID RENDSZER lacZ GAL4 kötő hely DKD Protein X Protein Y RNS pol. lacZ DKD Protein X RNS pol Protein Y GAL4 kötő hely kölcsönhatás esetén: kék telepek pozitív szelekció, nagyobb könyvtárakra kölcsönhatás esetén: növekedés hisztidin mentes táptalajon GAL4 kötő hely his3 DKD Protein X RNS pol Protein Y

A POZITÍV KLÓNOK TOVÁBBI FELDOLGOZÁSA A könyvtárakból kapott klónok általában túl nagyok közvetlen felhasználáshoz, ezért további munkálatok szükségesek:   1. AZ INSZERT RESTRIKCIÓS TÉRKÉPEZÉSE   2. A TÉRKÉP ALAPJÁN AZ INSZERT KISEBB DARABOKBAN TÖRTÉNŐ SZUBKLÓNOZÁSA    3. AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 4. AZ INSZERT SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 5. SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A SZEKVENCIÁN BELÜLI GÉNEK, ELEMEK AZONOSÍTÁSA

RESTRIKCIÓS TÉRKÉPEZÉS

Klónozás, szubklónozás A A B C vektor Hasítás, A,B enzimekkel Hasítás, A,B enzimekkel A inszert A B ligálás B Transzformálás, felszaporítás, tisztítás

A POZITÍV KLÓNOK TOVÁBBI FELDOLGOZÁSA A könyvtárakból kapott klónok általában túl nagyok közvetlen felhasználáshoz, ezért további munkálatok szükségesek:   1. AZ INSZERT RESTRIKCIÓS TÉRKÉPEZÉSE   2. A TÉRKÉP ALAPJÁN AZ INSZERT KISEBB DARABOKBAN TÖRTÉNŐ SZUBKLÓNOZÁSA    3. AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 4. AZ INSZERT SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 5. SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A SZEKVENCIÁN BELÜLI GÉNEK, ELEMEK AZONOSÍTÁSA

AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA

A POZITÍV KLÓNOK TOVÁBBI FELDOLGOZÁSA A könyvtárakból kapott klónok általában túl nagyok közvetlen felhasználáshoz, ezért további munkálatok szükségesek:   1. AZ INSZERT RESTRIKCIÓS TÉRKÉPEZÉSE   2. A TÉRKÉP ALAPJÁN AZ INSZERT KISEBB DARABOKBAN TÖRTÉNŐ SZUBKLÓNOZÁSA    3. AZ SZUBKLÓNOK SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 4. AZ INSZERT SZEKVENCIÁJÁNAK MEGÁLLAPÍTÁSA 5. SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A SZEKVENCIÁN BELÜLI GÉNEK, ELEMEK AZONOSÍTÁSA

De ha sikerül, és van szekvenciánk Mi van rajta,van-e gén? Honnan tudjuk, hogy Valamit találtunk, találtunk-e gént? CTCGAGACGCTGTTTCTGGGGTCATTCATTCTTGGCGGGCTGCAACTGCTGGTGTGACCGACGCGACCTGGCAGGCCGCGGTGCGCAACTGGCCGGGCGGACTAATGGTGGAGCAAAAGA TCGGCATGTCCAGCGCACCTGAAGCTTGGGTGGTTGCTGCAATAGCAGCCTTCCTTATTGGCATGGCGAAGGGCGGTTTGGCCAATGTGGGGGTTATCGCCGTTCCCTTGATGTCCCTGG TCAAGCCGCCGCTTACCGCTGCCGGATTGCTGCTCCCGATCTATGTCGTTTCTGATGCATTCGGCGTCTGGCTTTATCGGCACCGGTATTCTGCCTCCAATCTGCGCATCCTGATTCCTT CGGGATTTTTTGGGGTCCTGATTGGCTGGTTATTGGCCGGGCAGATCTCCGACGCGATTGCCAGTGTCATTGTTGGTTTCACCGGCTGCGGCTTCGTGGCTGTGCTGCTGGCACGACGAG GGGTGCCATCGGTGCCGCGTCAAGCCAACGTGCCCAAAGGATGGTTTCTGGGGGTGGCCACCGGCTTTACCAGCTTTTTGACTCATTCCGGTGCGGCGACCTTCCAGATGTTCGTGCTGC CGCAACGGCTGGACAAGACCATGTTCGCGGGCACATCAACGCTTACCTTTGCTGCCATAAACCTATTCAAGATTCCGTCCTACTGGGCATTGGGACAGCTTTCGACTTCCTCGGTCATGT CCGCGCTAGTGTTGATTCCGGTGGCCGTGGCCGGGACGTTCGCAGGTGTTTTTGCGACGCGCAGGCTATCGACATCCTGGTTCTTCATTCTGGTCCAGGCGATGTTGCTGGTGGTCTCCA TTCAGCTTCTGTGGAGGGGAATGTCGGATATCCTGAACTAGCTGGAGATCGCAATGTCAGAACGCTCAATCAATCAGAATGTAATCTTGACATAGAATACCGTTCCGATTTATTGCTTCG AGTGAAGCTGCCCGTCCGCTGAGATGTCATGACATTTTCCCCGCTTGATTCCGCCCTGCTTGGACCGTTGTTCGCGACCGATGAAATGCGCACGGTCTTCTCCGAACGGCGTTTTTTGGC GGGAATGCTTCGTGTTGAAGTGGCCCTGGCGCGCGCGCAGGCGGCAGAGGGCCTTGTCAGTTCGGAATTGGCCGACGCGATCGAGGTTGTTGGTACTGCCGGGTTGGACCCCGAGGCGAT GGCGGCGACTACTCGCATGACAGGAGTGCCCGCAATATCGTTCGTCCGTGCGGTGCAATCGGCCCTGCCGCCCTCACTGGCGGGTGGATTTCATTTCGGCGCCACCAGTCAAGACATCGT GGATACGGCCCACGCGCTCCAGCTGGCCGAGGCACTCGATATTATAGAAGTCGATTTACACGCCACTGTCAGCGCAATGATGAATCTGGCCGCTGCTCACTGCAATACACCCTGTATCGG GCGCACGGCCTTGCAGCACGCAGCGCCAGTTACGTTCGGCTACAAGGCGTCCGGCTGGTGCGTTGCCCTGGCGGAGCATCTGGTGCAGCTTCCCGCGCTGCGAAAGCGGGTTCTGGTGGC GTCGCTAGGGGGGCCGGTTGGTACCCTTGCCGCGATGGAGGAGCGGGCCGACGCTGTACTGGAGGGTTTCGCTGCGGACCTGGGGTTGGCCATTCCCGCCCTGGCCTGGCACACGCAGCG GGCCCGGATCGTCGAGGTGGCCAGTTGGCTGGCCATATTGCTGGGAATTCTGGCAAAAATGGCCACCGATGTCGTTCACTTGTCCTCCACGGAAGTGCGCGAGCTTTCCGAACCTGTAGC GCCGGGCAGGGGGGGCTCCTCGGCGATGCCTCACAAGCGGAACCCGATTTCCTCGATTACCATCCTGTCCCAGCATGCTGCGGCAGGGGCCCAGCTCTCCATTCTCGTGAACGGCATGGC CAGTCTGCACGAACGTCCGGTGGGGGCGTGGCATTCGGAATGGTTGGCTCTGCCGACGCTGTTCGGCCTTGCCGGCGGTGCCGTGCGCGAGGGCAGGTTTCTGGCCGAGGGGCTGCTGGT CGATGCCGACCAGATGGGTCGCAATCTACAATTGACCAATGGCCTGATTTTCAGCGACGCGGTAGCCGGCCAGTTGGCAAAGCACTTGGGTCGGGCCGAGGCTTATGCCGCTGTCGAGGA TGCCGCCGCCGAGGTGTTGCGTTCAGGCGGCAGCTTTCAGGGTCAGCTGAACCAGCGCCTGCCCGATCACCGCGACGCTATCGCTATTGCTTTTGATACGACGCCGGCGATCCAGGCCGG GGCCGCCCGCTGCCGTAGTGCGCTGGATCATGTGGCTCGTATTCTTGGACCCGCCTCTACCATCGGATTTCAAGGAGGCTAATGACGTGACGACACTGTTTGAGGCGACGACCATCCCGA TTTGCGAGGGCCCGCGCGACCAGACCGCCGAGATCCTTTTCGAGATGCCGCCGGGTGCGTGGGATACCCATTTTCATGTTTTTGGCCCAGTTTCATCGTTTCCATACGCAGAACACAGGC TCTATTCCCCACCGGAGTCGCCACTTGAGGATTATCTGGTGTTGATGGAGGCTTTGGGGATCGAGCGCGGCGTTTGTGTCCATCCGAATGTTCATGGTGCCGACAATTCGGTGACGCTCG ACGCAGTTGCGCGGTCCGATGGTCGTCTGCTGGCGGTGATCAAGCCACATCACGAGATGACTTTTGTTCAGCTGCGGGACATGAAGGCGCAGGGGGTCTGCGGGGTACGTTTTGCCTTCA ATCCGCAGCATGGCTCGGGCGAGTTGGATACTCGTTTGTTCGAGCGTATGTTGGACTGGTGCCGCGACCTAGGCTGGTGCGTAAAATTGCATTTCGCGCCCGCTGCGCTGGACGGTCTGG CTGAACGTTTGGCGCGCGTCGATATTCCGATCATCATCGATCATTTCGGGCGGGTGGACACCGCGCAAGGTGTGGATCAGCCGCACTTCCTGCGTTTGCTCGATCTGGCCAAACTGGACC ATGTCTGGATCAAGCTTACGGGGGCAGATCGTATTAGCGGTTCCGGCGCGCCATATGACGATGTCGTGCCCTTCGCGCACGCTTTGGCAGATGTGGCGCCCGACCGCCTCCTCTGGGGTT CGGATTGGCCGCATTCAGGCTATTTCGATCCGAAGCACATACCCAATGACGGCGACTTGTTGAACCTTTTGGCGCGTTTTGCCCCCGATGCTGAACTGCGTCGTAAGATCCTTGTGGACA ACCCGCAGCGCCTGTTCGGGGCTGCTTGAGGAGCCGAGCCGATGCAACCTTTCGTCTACGAAACAGCCCCAGCGCGCGTCGTTTTCGGGCGCGGCACTTCGCAGAATCTGCGGCGGGAAC TTGAGGCCCTGAATTTTGGCAGGGCGCTGGTTCTTTCCACGCCCGACCAAAAAGAACAATCGCTGCGAATTGCCCAGGGCCTGGGTTCTCAGCTGGCGGGGTCGTTCCACGCCGCTGCCA TGCATACGCCTGTCGAGGTCACCTTGCAGGCGCTTGAGGTGCTGAAGGATGTGCAGGCCGATTGCATCGTGGCGATTGGCGGCGGCTCAACCATTGGGTTGGGCAAGGCACTGGCCCTGC GCACCGATCTGCCGCAGATCGTCGTCCCGACGACTTATGCCGGCTCGGAAATGACGCCGATCCTGGGAGAGACGGAAAACGGGCTGAAGACCACACAGCGTAATCCCAAAGTGCAGCCGA GGGTGGTTCTCTACGATGTGGACCTGACTGTGACGCTTCCGGTGCAGGCCTCGGTTACATCAGGCATGAATGCGATCGCCCATGCGGCCGAGGCATTATATGCGCGGGACGGCAATCCGG TGATCTCGCTGATGGCCGAAGAGGCGATCCGCGCGCTGGCCCATGCCCTGCCGCGTATCGTTGCCACTCCCGACGATATCGAAGCGCGCAGCGATGCCCTCTATGGCGCGTGGCTGTGCG GAACGTGCCTGGGTTCGGCCGGAATGGCGTTGCACCATAAGCTCTGCCACACCCTCGGCGGAAGTTTCGATTTGCCACATGCCCCGACCCACACGGTCATCCTCCCCTATGCGCTCGCCT ATAATAGTGATGCGGCCAGGCCCGCAATGGCAGCCATCGCGCGCGCGCTGGGCATGGCGGATGCAGCGATGGGCATGAGAGCGTTGTCCATGCGGTTGGGCGCCCCGACATCGCTGCGTG AGTTGGGCATGGCAGAAGCCGATCTTGACCGCGCCGCCGACCTGGCCACGCAAAATGCCTATTGGAACCCGCGACCCATCGAGCATGGGCCGATTCGTAACCTTCTGGGACGGGCCTGGG CTGGAACTCCGGTCTGAAGGACCTAGAGGACAGTCAATTCATTGATCTGAAGTCACCAACGAGGAGATATGGGATGAACGAGAACATTGCGATCCGCAAATTGGGCCGCCGACTCCGATT GGGCATTGCCGGTGGCGCGGGTCATTCGCTGATTGGTCCGGTTCACCGGGAGGCGGCTCGGCTTGACGATTTGTTCTCTCTCGATGCTGCGGTGCTGTCCAGTAACGCGGAACGCGGGGA TGCTGAGGCCGCGGCTCTCGGAATTCCGCGCTCCTATTCGTCCACCGCCGAGATGTTCGCAATGGAGAAGGCTAGGCCCGACGGTATTGAGGCCGTTGCCATAGCCACGCCGAATGACAG CCATTACCGGATTCTGTGCGAGGCGCTGGACGCCGGGTTGCATGTAATCTGCGACAAGCCTTTAACCTCCACGAAGGCCGAGGCCGACGACGTGCTGGTGCGGGCGAAGGCCGCGGGCAA GGTTGTGGTCCTGACCCACAATTATTCTGGCTACGCCATGGTACGCCAAGCCCGCGCCATGGTCGCCGCCGGTGAACTTGGGAAAATCCACCAGATTCACGGGGTCTACGCTCTGGGCCA GATGGGCCGTTTGTTCGAGGCCGACGAAGGGGGCGTGCCTCCGGGGATGCGTTGGCGGATTGATCCTGCGCGCGGTGGCGACAGTCACGCCCTGGTGGATATCGGCACCCATGTGCACCA TCTGGCTACCTTCATCACGCAGTTACAGGTCGTTGAGGTAATGGCCGATCTTGGGCCGGCGGTTCAAGGCCGCGCGGCCCATGACAGTGCCAACGTCATGTTCCGTATGGAAAACGGAGC TTTCGGATCGTTCTGGGCCACCAAGGCGGCATCGGGGGCCAGCAAGCTGGCGATCGAAGTCTACGGTGACAAGGGCGGCGTCCTGTGGGAGCAGGCCGACGCCAATAACTTGCTACATAT GCGGCAGGGCCAACCCCCAGCCCTGATTGGTCGACAAGTTGCCGGGCTGCATCCTGCGGCAATCCGCGCGATGCGGGGGCCGGGTTATCATTTCGTGGAAGGCTATCGCGAGGCCTTTGC GAATATGTACGTGGATTTCGCCGAACAGATCTTGGCCATGATGGGCAAGGGGGCCGCAGATCACCTGGCATTGGAAGCGCCGTCGGTCGTGGACGGCCTGCGCTCCATGGCGTTCATCGA AGCCTGTGTGGCGTCGTCGCAGGACCGCCAATGGCGGCAGGTGGAGCAAGTCAGTTGATCTCTCAGCGGCTTCGGCATTTTTCCCGGGCTGGCGGCTCCCCGCAGCTCCCTCCGGTGGAA AGAACGGGTAATCAAAATAATATTCTGATTTTAAAGGATGTTCCAGACAGCTGATTATTCCTGAAATTTAGGGCTCTTTCGGCTGTAGCAATTGACTAAAAGCCGAATTTAAGGGTAATTAAACAAACGCTGTTCGTATTATTTAAACAGGTGAGTGATGGCGATATTCCTGGAAGGCTGGCCGATGGTTTCATCTGAATACCCGGCCAGAAGCGTTGAGGCGCACCCGGCCTATCTGAC GCCAGACTATGTTTTCACGCGAAAGCGTGCGCCGACTCGACCGCTGCGGTTAATTCCTCAGTCTGCGACGGAGCTGTATGGCCCGGTTTATGGACAAGAGAGCGTCCGTCCGGGGGATAA CGACCTGACCCGTCAGCACGAAGCTGAGCCGGTGGGGGAGCGGATTCTGGTGACGGGGCGCGTGACCGACGAAGACGGGCGGGGTGTCCCTAATACGCTGCTAGAGATCTGGCAGGCCAA TGCCGCCGGTCGCTATATCCACAAGCTTGACCAGCATCTTGCCCCGCTTGATCCAAATTTCTCGGGGGCAGGGCGTACGGTTACGGGGGCTGATGGCTCTTATTCCTTCATCACGATCGT GCCGGGCGCCTATCCGGTCGTGGGGCTGCACAATGTCTGGCGCCCGCGCCACATCCATGTGTCGTTGTTCGGTCCGTCCTTCGTGACCCGCTTGGTTACCCAGATATATTTCGAGGGCGA TCCGCTGCTGAAATATGACACGATCTACAACACGGCGCCCGACATCTCGAAGCGCAGCATGGTGGCGCAGTTGGACATGGGCGCCACGCAATCCGAATGGGGCCTGACCTATCGCTTCGA CATCGTTCTGCGTGGGCGCAACGGCAGCTATTTCGAGGAACCCCATGACCACTAAGACCCCACTGACCATCACCCCCTCGCAGACTGTCGGGCCTTTCTATGCCTATTGCCTGACCCCGG AGGACTACGGGACGCTTCCACCGCTGTTCGGCGCGCAGCTTGCGACCGAGGACGCCGAAGGGGAACGGATTACGATCCAGGGAACGATCACGGACGGAGAGGGGGCCATGGTTCCCGATG CCTTGATCGAGATCTGGCAGCCGGACGGGCAGGGGCGTTTTGCTGGAGCCCATCCAGAGCTGCGGAATTCGGCCTTCAAGGGCTTCGGGCGCCGCCACTGTGACAAAAGCGGAAACTTCA GTTTCCAAACCGTGAAGCCTGGCCGGGTGCCCACTGCCGACGGCGTGATGCAGGCACCCCATATCGCTTTGTCGATCTTCGGCAAGGGATTGAACCGCCGGCTCTATACGCGGATCTACT TCGCAGACGAGGCATCGAATGCCGAGGACCCCGTTCTGTCGATGCTGTCCGAGGATGAGCGCGTGACCCTGATCGCCACCTCTGAATCGCCCGCCGCATATCGCCTCGACATCCGCCTGC AAGGCGACGGCGAAACGGTGTTTTTCGAGGCCTGAGTCGGCCGGCAAGTTTGCGGGGATCCGTCCGCCGCAATTGTGTTTCGCTATAGACGCCACGGCTGCCGCATGCCGCCGGGTGGAA GGGCCTTGCAAGGCCTGTCAACGGCGGAGTAAAATCCGGCCAGGCGGCGGAGTAAAACCAGGCCACTTGTGGCCCACGCATGAGACACCCGGGAGGGCGTAGCCCAAGCGGGGGTCTCAT GCGTGTGCGGCGGTTTTCTGGGGGTTCAGCCAGCCTTGCGGGCGCGGCTTTGAGCGAGACGATAGCTGTCGCCGTTCATCTCGAG

HONNAN LEHET TUDNI, HOGY GÉNT TALÁLTUNK? 1. DNS szekvencia homológia alapján Adatbankok, FASTA, BLAST   2. ORF KERESÉS, Általában ATG-vel kezdődő szakaszokat keresünk, amelyek ésszerűen hosszúak (100 aminosav) Clone Manager 3. A kapott ORF-k homológia kutatása