Készítette : Giligor Dávid Neptun : HSYGGS

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

A Dijkstra algoritmus.
Készítette: Kosztyán Zsolt Tibor
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Tranzitív lezárt és Warshall algoritmus
Elemi algoritmusok Páll Boglárka.
Készítette: Major Máté
Készítette: Mester Tamás METRABI.ELTE.  Egy bemeneten kapott szöveg(karakter sorozat) méretét csökkenteni, minél kisebb méretűre minél hatékonyabb algoritmussal.
Matematika II. 4. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Matematika II. 2. előadás Geodézia szakmérnöki szak 2012/2013. tanév Műszaki térinformatika ágazat őszi félév.
Erősen összefüggő komponensek meghatározása
Készítette: Hanics Anikó. Az algoritmus ADT szintű leírása: A d[1..n] és P[1..n] tömböket, a korábban ismertetett módon, a távolság és a megelőző csúcs.
Dijkstra algoritmus Irányított gráfban.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Készítette Schlezák Márton
Gráf szélességi bejárása. Alapfogalmak G = (V,E)irányított, véges, nem üres gráf d (s,u)két csúcs távolsága lút hossza, élek száma Qsor adatszerkezet.
1. Univerzális nyelő Csúcsmátrixos ábrázolás esetén a legtöbb gráfalgoritmus futási ideje O(n2) azonban van kivétel. Egy irányított gráf egy csúcsa univerzális.
DAG topologikus rendezés
Dijkstra algoritmus. Kiválasszuk a legkisebb csúcsot, ez lesz a kezdőcsúcs, amit 0-val címkézünk és megjelöljük sárgaszínnel. Szomszédjai átcímkézése.
1 Györgyi Tamás – GYTNAAI.ELTE 2007 Április 03 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus Bellman-Ford Algoritmusa S a b d e
Dijkstra algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Készítette: Kosztyán Zsolt Tibor
Gráfok Készítette: Dr. Ábrahám István.
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Dijkstra-algoritmus ismertetése
Algoritmusok II. Gyakorlat 2. Feladat Pup Márton.
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
Egyszerű gráfok ábrázolása Pascalban:
Elemi algoritmusok Páll Boglárka.
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráf.
A Dijkstra algoritmus.
Készítette: Hanics Anikó. Az algoritmus elve: Kezdetben legyen n db kék fa, azaz a gráf minden csúcsa egy-egy (egy pontból álló) kék fa, és legyen minden.
Nevezetes algoritmusok: Fa megvalósítása Készítette: Várkonyi Tibor Zoltán.
Dijkstra algoritmusa Gubicza József (GUJQAAI.ELTE)
Prim algoritmusa Gubicza József (GUJQAAI.ELTE). Jellemzők Cél: Adott egyszerű gráfban a min. költségű feszítőfa meghatározása. Algoritmikus szinten: 3.
Gráfok 1. Szlávi Péter ELTE IK Média- és Oktatásinformatika Tanszék
Előadó: Nagy Sára Mesterséges intelligencia Kereső rendszerek.
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Dijkstra-algoritmus. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított gráfokban lehet megkeresni a legrövidebb utakat egy adott csúcspontból.
Kruskal-algoritmus.
Készítette Schlezák Márton
Háló- (gráf-) algoritmusok
Business Mathematics A legrövidebb út.
Algoritmus és adatszerkezet Tavaszi félév Tóth Norbert1 Floyd-Warshall-algoritmus Legrövidebb utak keresése.
Bellmann-Ford Algoritmus
Gráfok ábrázolása teljesen láncoltan
Szélességi bejárás. Feladat  Szélességi bejárás módszerrel menjünk végig egy tetszőleges gráfon.  Kikötés: A gráf egyszerű, azaz hurok- és többszörös.
Útkeresések.
Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
„RADIX előre „ Készítette : Giligor Dávid Neptun: HSYGGS.
INFOÉRA Gráfok, gráfalgoritmusok II. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Juhász István-Zsakó László: Informatikai.
Dijkstra algoritmus. Egy minimális költségű utat keres élsúlyozott gráfban A gráf lehet irányított vagy irányítás nélküli Feltétele, hogy pozitív élsúlyok.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
A Huffman féle tömörítő algoritmus Huffman Kód. Az Algoritmus Alapelvei Karakterek hossza különböző A karakter hossza sűrűsége határozza meg: Minél több.
Eötvös Konferencia, 2008 április 26. Kovács Máté 1 Útkeresések optimalizálása számítógépes játékokban.
LZW (Lempel-Ziv-Welch) tömörítő algoritmus
Kvantitatív módszerek
A Dijkstra algoritmus.
Gráfok szélességi bejárása Dijkstra algoritmus
INFOÉRA Gráfok, gráfalgoritmusok II. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) IDE KELL: prioritási sor kupaccal. Juhász.
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Dijkstra algoritmusa: legrövidebb utak
Dijkstra algoritmusa: legrövidebb utak
Dijkstra algoritmusa: legrövidebb utak
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Előadás másolata:

Készítette : Giligor Dávid Neptun : HSYGGS Floyd algoritmus Készítette : Giligor Dávid Neptun : HSYGGS

Cél : Adott egy G=(V,E) él súlyozott, irányított vagy irányítás nélküli, negatív összköltségű irányított kört nem tartalmazó véges gráf. Határozzuk meg minden u,v csúcsra, az u-ból a v-be vezető legkisebb költségű utat. Ennek meghatározásához egy „speciális” csúcsmátrixot fogunk használni.

A csúcsmátrix: Legyen D(k) egy olyan csúcsmátrix, amely minden i, j csúcspárra azon (i-ből j-be vezető) utak legrövidebbjeinek a hosszát tartalmazza, amelyek közbülső csúcsai k-nál nem nagyobb sorszámúak. Tehát D(0) az eddig is ismert csúcsmátrixot fogja adni. Mivel irányítás nélküli gráfot használunk, így a mátrix szimmetrikus, érdemes csak a diagonális alatt, vagy feletti részt számolni

Algoritmus:

Az algoritmus menete :