Járművillamosság-elektronika

Slides:



Advertisements
Hasonló előadás
Váltakozó feszültség.
Advertisements

Elektromos mező jellemzése
Galvánelemek és akkumulátorok
Elektrotechnikai lemezek mágneses vizsgálata
Kondenzátor.
Elektromos ellenállás
Elektromos alapismeretek
Váltakozó áram Alapfogalmak.
A FÉMEK ÁLTALÁNOS JELLEMZÉSE
Váltakozó áram Alapfogalmak.
Félvezető technika.
MIKROELEKTRONIKA 3. 1.Felületek, felületi állapotok. 2.Térvezérlés. 3.Kontakt effektusok a félvezetőkben. 4.MES átmenet, eszközök.
A villamos és a mágneses tér
MIKROELEKTRONIKA 6. A p-n átmenet kialakítása, típusai és alkalmazásai
Elektrotechnika 7. előadás Dr. Hodossy László 2006.
A „tér – idő – test – erő” modell a mechanikában
Elektrosztatikus és mágneses mezők
Elektrotechnika-elektronika
12. előadás Elektrosztatikus és mágneses mezők Elektronfizika
Elektromágneses indukció, váltakozó áram
Fizika 7. Félvezető eszközök Félvezető eszközök.
Elektromágneses hullámok
Soros kapcsolás A soros kapcsolás aktív kétpólusok, pl. generátorok, vagy passzív kétpólusok, pl. ellenállások egymás utáni kapcsolása. Zárt áramkörben.
Feszültség, ellenállás, áramkörök
Elektromos alapjelenségek, áramerősség, feszültség
Áramköri alaptörvények
Ohm törvénye. Az elektromos ellenállás
Ellenállás Ohm - törvénye
Elektromos áram.
Félvezető áramköri elemek
Mágneses mező jellemzése
Villamos tér jelenségei
Az elektromos áram.
Elektromos áram, áramkör, ellenállás
Hő és áram kapcsolata.
Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
Járművillamosság-elektronika
Mágnesesség, elektromágnes, indukció
Készítette: Gáspár Lilla G. 8. b
Ohm-törvény Az Ohm-törvény egy fizikai törvényszerűség, amely egy elektromos vezetékszakaszon átfolyó áram erőssége és a rajta eső feszültség összefüggését.
1.Határozza meg a kapacitást két párhuzamos A felületű, d távolságú fémlemez között. Hanyagolja el a szélhatásokat, feltételezve, hogy a e lemez pár egy.
a mágneses tér időben megváltozik
Készítette: Juhász Krisztián.  Egy tekercsben folyóáramot változtatjuk, akkor egy másik, például az eredeti köré csévélt, de attól elválasztott másik.
Rézkábel hibái.
Készült a HEFOP P /1.0 projekt keretében Az információtechnika fizikája XII. Előadás Elektron és lyuk transzport Törzsanyag Az Európai.
Villamosságtan 1. rész Induktiv úton a Maxwell egyenletekig
Elektromágneses hullámok
Elektromos áram, áramkör
Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
Készült a HEFOP P /1.0 projekt keretében
Villamos töltés – villamos tér
Az elektromágneses indukció
Az időben állandó mágneses mező
A villamos és a mágneses tér kapcsolata
A mértékegységet James Prescott Joule angol fizikus tiszteletére nevezték el. A joule a munka, a hőmennyiség és az energia – mint fizikai mennyiségek.
A MÁGNESES TÉR IDŐBEN MEGVÁLTOZIK Indukciós jelenségek Michael Faraday
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék ENERGETIKA ENERGIAELLÁTÁS FAZEKAS ANDRÁS ISTVÁN.
Tematika Laborgyakorlatok Alapfogalmak Előadók: Lőrincz Illés rs1.sze.hu/~lorinczi Veres László F előadó,hétfő, 1-2. óra Járművillamosság-elektronika.
Elektromosságtan.
EGYENÁRAM Egyenáram (angolul Direct Current/DC): ha az áramkörben a töltéshordozók állandó vagy változó mennyiségben,
Az ellenállás Ohm törvénye
Komplex természettudomány-fizika
Elektromágneses indukció
Az elektromágneses indukció
ÁRAMERŐSSÉG.
Fizikai kémia I. a 13. GL osztály részére 2016/2017
Méréstechnika 1/15. ML osztály részére 2017.
Járművillamosság-elektronika I.
Félvezető áramköri elemek
Zárthelyi előkészítés
Előadás másolata:

Járművillamosság-elektronika Alapfogalmak Villamos és mágneses Átmeneti jelenségek Félvezetők Fajtáik 2010.09.08.

Tematika

Tematika

Labor időpontok

Járművillamosságtan-elektronika I. Definíciók Villamos áram: töltések rendezett irányú áramlása Iránya: pozitívból negatívba mutat (technikai áramirány) negatívból pozitívba (elektronok valós irányú mozgása - fizikai áramirány) Okozhatja: dörzs elektromosság, hő energia, galván- és indukciós elektromosság Járművillamosságtan-elektronika I.

Villamos áram hatásai: Hőhatás (ablakfűtés) Elektromágneses (vezető körül mágn. tér) Vegyi (galván elemek) Ívhatás (gyújtógyertya) Élettani (áramütés!!!!!) Fény (izzólámpák) Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Áramerősség Áramerősség: I (A) I=Q/t (vezető keresztmetszetén egységnyi idő alatt átáramló töltésmennyiség) 1 A az áram erőssége, ha két párhuzamos, egyenes, végtelen hosszúságú, elhanyagolhatóan kicsiny kör keresztmetszetű és vákuumban, egymástól 1 m távolságban lévő vezető között méterenként 2x10− 7 N erőt hoz létre. Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Feszültség Feszültség: U (V) U=W/Q az elektromos töltésnek az A pontból a B pontba történő mozgatása során végzett munka (W) és az elektromosan töltött test töltésének (Q) a hányadosával definiált fizikai mennyiség. Egysége: J/C Elektromos potenciál: U(P) nevezzük A tér bármely pontjának (P), egy kitüntetett ponthoz (O) viszonyított feszültségét Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Ellenállás Ellenállás: R (Ohm) R=U/I Ohm-törvény: a vezetőn átfolyó áram erőssége egyenesen arányos a vezető két vége közti feszültséggel Fajlagos ellenállás: R=l/A Vezetőképesség: G (Siemens)=1/R Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Villamos munka: W=QU=ItU (J) Villamos teljesítmény: P (Watt)=W/t=UI Kapacitás: C(F) C=Q/U (töltés befogadó képesség) a kondenzátorra vitt töltés (Q) és a kondenzátor fegyverzetei közötti feszültség (U) hányadosa. Egysége: C/V, röviden Farad. Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Mágneses indukció: B (T) B=M/NIA Mágneses fluxus: (weber)=BA adott felületen áthaladó indukcióvonalak száma Mágneses térerő: H (A/m) Magnetometer Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. B=μH=μoμrH, μo=4π10-7 Tm/A μ:permeabilitás μr<<1 diamágneses anyag (fa, ezüst) μr>1 paramágneses anyag (Al, Pt, Mg, Ti, Cr, Mn, Mo, W ) μr>>1 ferromágneses anyag (vas, nikkel, kobalt ) Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Mágneses Ohm törvény Φ=BA=μHA=μNiA/l=μAθ/l, θ Φ=θ/RM Θ: mágneses gerjesztés=Ni RM: mágneses ellenállás=l/μA Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Egyenes tekercsre Egyenes tekercs (szolenoid) mágneses tere: az indukcióvonalak a tekercs belsejében párhuzamos egyenesek - azaz itt homogén a mező. B=μiN/l Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. A hiszterézisgörbe által bezárt terület arányos a vasanyag átmágnesezéséhez szükséges energiával. A váltakozó irányú gerjesztéssel elvesző energia, a hiszterézisveszteség, hővé alakul át. Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Áramjárta vezetőre ható erő: ha áram folyik egy mágneses mezőbe helyezett vezetőben, és az nem párhuzamos az indukcióvonalakkal, akkor a mágneses mező erőt fejt ki a vezetőre F=liB, másképpen F=QvB Jobbkéz szabály (i: hüvelyk- ujj, B: mutatóujj, F: középsőujj) Járművillamosságtan-elektronika I.

Időben változó mágneses mező Mozgási indukció: ha egy vezető az indukcióvonalakat metszve mozog mágneses mezőben, akkor a végei közt feszültség (ha pedig a vezető egy zárt kör, akkor egyúttal elektromos áram) jön létre. Ezt a feszültséget illetve áramot indukált feszültségnek és áramnak nevezzük. Faraday törvény: Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Lenz-szabály: az indukált áram iránya mindig olyan, hogy annak mágneses mezeje akadályozza az indukáló folyamatot Önindukciós együttható: induktivitás (tekercsre) Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Hall effektus UH=RHBI/h Gyújtásvezérlés Indukció, áram és teljesítmény mérés, érintés-mentes Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Tranziens jelenségek Be és kikapcsoláskor T=L/R és WL=Li2/2 Imax=U/R Járművillamosságtan-elektronika I.

Tekercset kondenzátorral helyettesítve WC=CU2/2 Üres kondi rövidzárnak tekinthető Áramot korlátozni kell T=RC Ki és bekapcsolásnál Nagy ugrások lehetnek Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Félvezetők 4 vegyértékű elemek (Si, Ge) Szén is az, egykristálya a gyémánt Dotálással „szennyezzük” Öt vegyértékűvel: As, Sb, P n típusú Három vegyértékűvel: In, Ga, p típusú Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. 1 1 H 2 He 2 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 3 11 Na 12 Mg 13 Al 14 Si 15 P 16 S 17 Cl 18 Ar 4 19 K 20 Ca 21 Sc 22 Ti 23 V 24 Cr 25 Mn 26 Fe 27 Co 28 Ni 29 Cu 30 Zn 31 Ga 32 Ge 33 As 34 Se 35 Br 36 Kr 5 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 Xe 6 55 Cs 56 Ba 57 La * 72 Hf 73 Ta 74 W 75 Re 76 Os 77 Ir 78 Pt 79 Au 80 Hg 81 Tl 82 Pb 83 Bi 84 Po 85 At 86 Rn Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Dióda Villamos visszacsapó szelep P-n átmenetben a szabad elektronok a p rétegbe diffundálnak, míg a lyukak az n réteget pozitív töltésűvé teszik Záró irányú feszültséget rákapcsolva a potenciálgát nő Nyitó irányban (p-re pozitív, n-re negatív) potenciálgát csökken Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Fajtáik Egyenirányító diódák (Graetz híd) Jel (kapcsoló) diódák Teljesítmény diódák Feszültség stabilizálás (Zéner) Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Graetz-kapcsolás Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Tranzisztorok Három réteg, két átmenet N-p-n ill. p-n-p Három kivezetés (bázis, emitter, kollektor) Bipoláris, térvezérelt Erősítése β=50-200=IE/IB Erősítés növelhető (Darlington kapcsolás) Járműben általában kapcsoló üzemben használjuk (gyors, nagy záró irányú és kicsi nyitó irányú ellenállás) Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Jelölése: Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Tirisztorok Négy réteg n-p-n-p Három kivezetés (p1, n2 és p2,mint gate) P2-re nyitó fesz. Tirisztor begyújt Kikapcsolni IA csökken- tésével lehet Vezérlő áram kicsi Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Karakterisztikája Járművillamosságtan-elektronika I.

Járművillamosságtan-elektronika I. Triac Két tirisztor közös gate-tel Mindkét irányban szabályozható Járművillamosságtan-elektronika I.