Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

A Dijkstra algoritmus.
Készítette: Kosztyán Zsolt Tibor
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Készítette: Major Máté
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Matematika II. 4. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Illés Tibor – Hálózati folyamok
DAG topologikus rendezése
Készítette: Hanics Anikó. Az algoritmus ADT szintű leírása: A d[1..n] és P[1..n] tömböket, a korábban ismertetett módon, a távolság és a megelőző csúcs.
Dijkstra algoritmus Irányított gráfban.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Gráfok szélességi bejárása
Gráf Szélességi bejárás
Háromszögek szerkesztése 3.
Gráf szélességi bejárása. Alapfogalmak G = (V,E)irányított, véges, nem üres gráf d (s,u)két csúcs távolsága lút hossza, élek száma Qsor adatszerkezet.
DAG topologikus rendezés
Prím algoritmus.
Dijkstra algoritmus. Kiválasszuk a legkisebb csúcsot, ez lesz a kezdőcsúcs, amit 0-val címkézünk és megjelöljük sárgaszínnel. Szomszédjai átcímkézése.
„Országos” feladat. Feladat: Egy tetszőleges, színes országokat tartalmazó térképen akar eljutni egy kommandós csapat egy országból egy másikba. Viszont.
Dijkstra algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Készítette: Kosztyán Zsolt Tibor
Gráf szélességi bejárása
Dijkstra algoritmus. Az algoritmus elve Kezdésnél a start csúcson kívül minden csúcs távolsága legyen ∞. (A start csúcs távolsága 0) Feltételes minimum.
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Dijkstra-algoritmus ismertetése
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
Gráf Szélességi bejárás/keresés algoritmusa
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráf.
A Dijkstra algoritmus.
Dijkstra algoritmusa Gubicza József (GUJQAAI.ELTE)
Prim algoritmusa Gubicza József (GUJQAAI.ELTE). Jellemzők Cél: Adott egyszerű gráfban a min. költségű feszítőfa meghatározása. Algoritmikus szinten: 3.
Gráfok 1. Szlávi Péter ELTE IK Média- és Oktatásinformatika Tanszék
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Az ábrán az inicializáló blokk lefutása utáni állapotot láthatjuk. A KÉSZ halmazhoz való tartozást színezéssel valósítjuk meg. A nem KÉSZ csúcsok fehérek,
Mélységi bejárás Az algoritmus elve: Egy kezdőpontból kiindulva addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba, amelyből már nem.
Dijkstra-algoritmus. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított gráfokban lehet megkeresni a legrövidebb utakat egy adott csúcspontból.
Szélességi bejárás. Kezdőcsúcsból felvétele Innen haladunk egy szinttel mélyebbre, felvesszük az összes olyan csúcsot, amit így elérhetünk Ha elfogytak,
Kruskal-algoritmus.
Készítette Schlezák Márton
Szélességi bejárás. Kezdőcsúcs felvétele Innen haladunk egy szinttel lejebb, itt felvesszük az összes olyan csúcsot, amit elérünk Ha elfogytak, akkor.
Algoritmus és adatszerkezet Tavaszi félév Tóth Norbert1 Floyd-Warshall-algoritmus Legrövidebb utak keresése.
Bellmann-Ford Algoritmus
Horváth Bettina VZSRA6.  Célja: Az eljárás célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben.
Útkeresések.
SZÉLESSÉGI BEJÁRÁS Pap Imre DVX468. A bejárás Meglátogatjuk az első csúcsot, majd ennek a csúcsnak az összes szomszédját. Aztán ezen szomszédok összes.
Diszjunkt halmazok adatszerkezete A diszjunkt halmaz adatszerkezet diszjunkt dinamikus halmazok S={S 1,…,S n } halmaza. Egy halmazt egy képviselője azonosít.
Gráf szélességi bejárása. Cél Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
Gráf szélességi bejárása. A szélességi bejárás elmélete Célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő.
Szélességi bejárás Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Készítette : Giligor Dávid Neptun : HSYGGS
Prim algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Szélességi bejárás. Véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben Egy csúcsot egyszer járunk be Egyenlő.
Dijkstra algoritmus. Egy minimális költségű utat keres élsúlyozott gráfban A gráf lehet irányított vagy irányítás nélküli Feltétele, hogy pozitív élsúlyok.
Dijkstra algoritmus. Az algoritmus működése  Kezdésnél a kezdő csúcson kívül minden csúcs távolsága legyen ∞, a kezdő csúcs távolsága 0.  Feltételes.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
Eötvös Konferencia, 2008 április 26. Kovács Máté 1 Útkeresések optimalizálása számítógépes játékokban.
Kvantitatív módszerek
HÁLÓZAT Maximális folyam, minimális vágás
A Dijkstra algoritmus.
HÁLÓZAT Maximális folyam, minimális vágás
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Dijkstra algoritmusa: legrövidebb utak
Dijkstra algoritmusa: legrövidebb utak
Dijkstra algoritmusa: legrövidebb utak
Előadás másolata:

Morvai Mária-Júlia F3D3D4

 Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott egy s ∈ V forrás (kezdőcsúcs).  Határozzuk meg, ∀ v ∈ V csúcsra, s-ből v-be vezető legrövidebb utat és annak hosszát!

 Az inicializáló lépés után a kezdőcsúcs 0, a többi csúcs végtelen súllyal szerepel az elsőbbségi sorban.

1. lépés:  kivesszük a prioritásos sorból az s csúcsot (mivel az ő prioritása a legkisebb)  s szomszédaira kiszámítjuk az s-ből kimenő éllel meghosszabbított utat. Ha ez javító él, azaz az s-en átmenőút rövidebb, mint az adott szomszédba eddig talált legrövidebb út, akkor a szomszédban ezt feljegyezzük (d és P tömbbe).

2. lépés:  C csúcs kiterjesztése  A-ba találtunk rövidebb utat

3.lépés:  A csúcs kiterjesztése:

4. lépés:  B csúcs kiterjesztése->nem kapunk rövidebb utat  D csúcs kiterjesztése

5.lépés:  Végső állapot, ahol s-ből adott pontokba menő út egyértelműen látszik