Kémiai egyensúlyok. CH 3 COOH + C 2 H 5 OH ↔ CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH.

Slides:



Advertisements
Hasonló előadás
A halmazállapot-változások
Advertisements

Gázok.
Porleválasztó berendezések
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011.
Sav-bázis egyensúlyok Komplexek képződése Oldhatóság
Gáz-folyadék fázisszétválasztás
Ideális gázok állapotváltozásai
Halmazállapotok Részecskék közti kölcsönhatások
A KÉMIAI REAKCIÓ EGYENLETE
Folyadékok vezetése, elektrolízis, galvánelem, Faraday törvényei
Piaci kereslet és kínálat
Sav-bázis egyensúlyok
LEPÁRLÁS (DESZTILLÁCIÓ) Alapfogalmak
VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
BIOKÉMIAI ALAPOK.
Heterogén kémiai egyensúly
Kémiai egyensúlyok A kémiai reakciók reakcióidő szempontjából lehetnek: pillanatreakciók időreakciók A reakciók lehetnek. egyirányú egyensúlyi reakciók.
ENZIMEK Def: katalizátorok, a reakciók (biokémiai) sebességét növelik
A KÉMIAI EGYENSÚLY A REAKCIÓK MEGFORDÍTHATÓK. Tehát nem játszódnak le végig, egyensúly alakul ki a REAKTÁNSOK és a TERMÉKEK között. Egyensúlyban a termékekhez.
KOLLIGATÍV SAJÁTSÁGOK
Kémiai reakciók katalízis
Az átlagos kémiai (ill. , mol-ekvivalens) atom-, ill
Reakciók vizes közegben, vizes oldatokban
Mi a reakciók végső hajtóereje?
A moláris kémiai koncentráció
Híg oldatok törvényei. Kolligatív tulajdonságok
Reakciók hőeffektusa, hőszínezete, a reakcióhő
Szonolumineszcencia vizsgálata
Citromsav, Nátrium-acetát és szőlőcukor azonosítása
Sav-bázis reakciók BrønstedLowry-féle sav-bázis elmélet
4. Reakciókinetika aktiválási energia felszabaduló energia kiindulási
OLDÓDÁS.
rész.
A kémiai egyensúlyi rendszerek
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
TÁMOP /1-2F Analitika gyakorlat 12. évfolyam Környezeti analitikai vizsgálatok Fogarasi József 2009.
Kémiai kinetika.
HŐTAN 4. KÉSZÍTETTE: SZOMBATI EDIT
Turányi Tamás ELTE Kémiai Intézet
Kémiai egyensúlyok A kémiai reakciók reakcióidő szempontjából lehetnek: pillanatreakciók pillanatreakciók időreakciók időreakciók A reakciók lehetnek.
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
Kémiai reakciók iránya
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
HŐTAN 6. KÉSZÍTETTE: SZOMBATI EDIT
Felkészítés szakmai vizsgára vegyipari területre II/14. évfolyam
ANYAGI HALMAZOK Sok kémiai részecskét tartalmaznak (nagy számú atomból, ionból, molekulából állnak)
A belső energia tulajdonságai Extenzív mennyiség moláris: Állapotfüggvény -csak a rendszer szerkezeti adottságaitól függ -csak a változása ismert előjelkonvenció.
ÁLTALÁNOS KÉMIA 3. ELŐADÁS. Gázhalmazállapot A molekulák átlagos kinetikus energiája >, mint a molekulák közötti vonzóerők nagysága. → nagy a részecskék.
A termodinamika II. és III. főtétele Fizikai kémia előadások 3. Turányi Tamás ELTE Kémiai Intézet.
KÉMIAI REAKCIÓK. Kémiai reakciók Kémiai reakciónak tekintünk minden olyan változást, amely során a kiindulási anyag(ok) átalakul(nak) és egy vagy több.
Kémiai egyensúlyok. CH 3 COOH + C 2 H 5 OH ↔ CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH.
Elegyek Fizikai kémia előadások 5. Turányi Tamás ELTE Kémiai Intézet.
Enzimkinetika Komplex biolabor
Általános kémia előadás Gyógyszertári asszisztens képzés
A kémiai egyenlet.
Diffúzió Diffúzió - traszportfolyamat
Fizikai kémia 2 – Reakciókinetika
Fizikai kémia 2 – Reakciókinetika
Termodinamikai egyensúly reaktív rendszerekben
A kémiai egyensúlyi rendszerek
A gáz halmazállapot.
A gázállapot. Gáztörvények
Fizikai kémia I. a 13. GL osztály részére 2016/2017
Termokémia.
Homogén egyensúlyi elektrokémia: elektrolitok termodinamikája
MŰSZAKI KÉMIA 3. KÉMIAI EGYENSÚLY ELŐADÁSOK GÉPÉSZMÉRNÖK HALLGATÓKNAK
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Azeotróp elegyek elválasztása
Kémiai reaktorok A reaktorok tervezéséhez és működtetéséhez a reakciók
Előadás másolata:

Kémiai egyensúlyok

CH 3 COOH + C 2 H 5 OH ↔ CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] k 1 [CH 3 COOH].[C 2 H 5 OH] = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Tömeghatás törvénye K: egyensúlyi állandó K = k1/ k2 = [CH 3 COOH].[C 2 H 5 OH] [CH 3 COOC 2 H 5 ].[H 2 O]

Kémiai egyensúly jellemzése Egyensúlyi reakció általános felírása a.A + b.Bc.C + d.D K = ▬▬▬▬▬ [C] c [D] d [A] a [B] b Ha K értéke nagy, a reakció termékei vannak többségben Ha K értéke kicsi alig képződik reakció termék [C] ; [D][A] ; [B] ; : egyensúlyi koncentrációk a, b, c, d : sztöchiometriai együtthatók K : dimenziómentes szám, amelyhez mindig tartozik egy egyensúlyi egyenlet

Sztöchiometriai együttható j sztöchiometriai együttható (a termokémiában használtuk először) általános kémiai reakció: j reaktánsra negatív, a termékre pozitív. A j az anyag képlete Például: 2 H 2 + O 2 = 2 H 2 O 0 =  2 H 2 +  1 O H 2 O  1 =  2 2 =  1 3 = +2 A 1 = ” H 2 ” A 2 = ”O 2 ” A 3 = ” H 2 O” 4

Az egyensúlyi állandó Egyensúlyi állandó a középiskolában: K c moláris koncentrációkkal kifejezett egyensúlyi állandó A + B ⇄ C + D egyensúly reakciónál: K x móltörtekkel kifejezett egyensúlyi állandó: pl. A + B ⇄ C + D egyensúly reakciónál: A =  1, B =  1, C = + 1, D = + 1 K p parciális nyomásokkal kifejezett egyensúlyi állandó: pl. A + B ⇄ C + D egyensúly reakciónál: A =  1, B =  1, C = + 1, D = + 1 Bevezetése reakciókinetikai alapon: r 1 = k 1 [A][B]; r -1 = k -1 [C][D]; egyensúlyban r 1 = r -1, tehát K = k 1 /k -1 = [C][D] / ([A][B])

Reakciószabadentalpia Volt már a „II. főtétel” fejezetben („termokémia szabadentalpiával”): DEF standard reakciószabadentalpia: a standard állapotú, tiszta termékek és reaktánsok szabadentalpiáinak különbsége. Standard reakciószabadentalpia: Reakciószabadentalpia tetszőleges p nyomáson: CH 3 COOH + C 2 H 5 OH ↔ CH 3 COOC 2 H 5 + H 2 O Hac + EtOH = EtAc + H 2 O

2) Van egy állandó nyomású és hőmérsékletű elegyünk, ebbe a j-edik anyag dn j mólját juttatjuk. G megváltozása: G változása elegyben a komponensek mólszámával 1) Van egy állandó nyomású és hőmérsékletű elegyünk, ebbe a j-edik anyag egy mólját juttatjuk. Mekkora lesz a G megváltozása? Ismétlés: DEF kémiai potenciál avagy parciális moláris szabadentalpia: G megváltozása, ha elegyhez állandó T hőmérséklet, p nyomás és elegyösszetétel mellett az j-edik komponens egy mólját adjuk. G megváltozása: 3) Van egy állandó nyomású és hőmérsékletű elegyünk, ebbe minden komponensből beleteszünk egy kicsit. Az anyagmennyiségek változása (mol): dn 1, dn 2, dn 3,..., dn j,... G megváltozása:

3) tetszés szerint tudok anyagokat betenni 4) a kémiai reakcióegyenlet kapcsolatot teremt a keletkező és elfogyó anyagok között: pl. A + B ⇄ C + D reakció ha 0,1 mól C keletkezik, akkor biztosan  1  0,1 mól A változás,  1  0,1 mól B változás, +1  0,1 mól D változás A fogyás/keletkezés aránya a sztöchiometriai együtthatóknak felel meg! G változása kémiai egyensúly eltolódásakor/1 Mi a különbség a két eset között ? 3) beleteszem az anyagokat 4) reakcióban keletkeznek és fogynak az anyagok G megváltozása: 4) Van egy állandó nyomású és hőmérsékletű elegyünk, ebben kémiai reakció játszódik le. Az egyes komponensek anyagmennyiségének változása (mol): dn 1, dn 2, dn 3,..., dn j,... G megváltozása:

G változása kémiai egyensúly eltolódásakor 2. Kémiai reakció esetén az anyagmennyiségek d n j változásai a sztöchiometriai együtthatók által megszabott arányban állnak egymással: A szabadentalpia változása a reakció előrehaladása során: Állandó p, T zárt rendszerben a szabadentalpia spontán folyamatban mindig csökken. Ha tiszta reaktánsokból indulunk, G csökken. Ha tiszta termékekből indulunk, G csökken. Az egyensúlyban G-nek minimuma van. DEF  reakciókoordináta a kémiai reakció előrehaladását jellemzi a reaktánsoktól a termékekig. Mértékegysége: mol és 

G meredeksége  szerint nulla az egyensúly koncentrációknál:  j (e) az egyensúlyi koncentrációkhoz tartozó kémiai potenciál. G változása kémiai egyensúly eltolódásakor 3. Állandó p, T zárt rendszerben a szabadentalpia spontán folyamatban mindig csökken. Ha tiszta reaktánsokból indulunk, G csökken. Ha tiszta termékekből indulunk, G csökken. Az egyensúlyban G-nek minimuma van. G változása  függvényében: G meredeksége  szerint:

A j. komponens jellemzői:  j (e) az egyensúlyi koncentrációkhoz tartozó kémiai potenciál. j sztöchiometriai együttható Az egyensúly feltétele Ideális elegyben az i. anyag kémiai potenciálja: j. anyag egyensúlyban:

Az egyensúly feltétele Szabadentalpiaváltozás a reakcióban:

Reakciókinetika Arrhenius összefüggés: k = A*e -Ea/RT v 1 = v 2

Egyensúlyi összefüggések alkalmazása Egyensúlyi folyamatok: pl.: észterképződés Gyenge savak, bázisok disszociációja Víz ionszorzata, pH Oldhatósági szorzat – szennyezők eltávolítása Komplexképződési egyensúlyok