2005. 09. 28. KOLLOID OLDATOK.

Slides:



Advertisements
Hasonló előadás
Az abszorpció Fizikai abszorpció, amikor a gázkomponens csak egyszerűen oldódik az abszorbensben. Ilyenkor a komponens oldódását az egyensúlyi viszonyok,
Advertisements

Fluid-fluid határfelületek, a felületi feszültség
Moduláris oktatás a 8. évfolyam kémia tantárgyból
A halmazállapot-változások
Készítette: Bráz Viktória
LÉGNEMŰ HETEROGÉN RENDSZEREK SZÉTVÁLASZTÁSA
Halmazállapotok, állapotváltozások
Szétválasztási módszerek, alkalmazások
Elektromos alapismeretek
A szubsztancia részecskés felépítése és
Kénsav H2SO4.
Kolloidok, felületek Kolloid rendszerek:
Faiparban alkalmazott polimerek
SÓOLDATOK KÉMHATÁSA PUFFEROLDATOK
KOLLOID OLDATOK.
OLDATOK KOLLIGATÍV TULAJDONSÁGAI
HETEROGÉN RENDSZEREK SZÉTVÁLASZTÁSA
Készítette Varga István VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
Derítés.
Abszorpció Fizikai abszorpció, amikor a gázkomponens csak egyszerűen oldódik az abszorbensben. Ilyenkor a komponens oldódását az egyensúlyi viszonyok,
A talaj 3 fázisú heterogén rendszer
Új irányzatok a biológiában Fehérjék szerkezete, felosztása
Szappanok káros hatása
A határfelületi jelenségek szerepe a kolloid diszperziók viselkedésében, kinetikai stabilitásában A fáziskolloidok termodinamikailag nem stabilak, csak.
Asszociációs (micellás) kolloidok (vizes rendszerek)
Asszociációs (micellás) kolloidok (vizes rendszerek)
A mikrofázisok közötti taszító és vonzó kölcsönhatások: DLVO-elmélet
Gélelektroforézis Molina Csaba.
Mit tudunk már az anyagok elektromos tulajdonságairól
A víz.
A kolloidok.
TALAJ KÉMIAI TULAJDONSÁGAI
Bioszeparációs technikák ELVÁLASZTÁSTECHNIKA
Halmazállapot-változások
A sósav és a kloridok 8. osztály.
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Az anyag néhány tulajdonsága, kölcsönhatások
Az anyagok részecskeszerkezete
Az oldatok.
ÖSSZEGOGLALÁS KEVERÉKEK OLDATOK ELEGYEK.
A víz aqua.
Halmazállapotok Gáz, folyadék, szilárd.
Oldatkészítés, oldatok, oldódás
Elektromos áram, áramkör
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Többkomponensű rendszerek II.
Összefoglalás.
Ionok, ionvegyületek Konyhasó.
Általános kémia előadás Gyógyszertári asszisztens képzés Anyagi rendszerek leírása, oldatok összetétele II. Szerkesztette:dr. Kalmár Éva és Dr. Kormányos.
Általános kémia előadás Gyógyszertári asszisztens képzés
Kolloidika, határfelületi jelenségek Szekrényesy: Kolloidika (BME jegyzet) Szántó Ferenc: A kolloidkémia alapjai.
"Víz! Se ízed nincs, se zamatod, nem lehet meghatározni téged, megízlelnek, anélkül, hogy megismernének. Nem szükséges vagy az életben: maga az élet vagy."
Általános kémia előadás Gyógyszertári asszisztens képzés
I. Az anyag részecskéi Emlékeztető.
BELÉPÉS A RÉSZECSKÉK BIRODALMÁBA
KÖLCSÖNHATÁSOK.
Szervetlen vegyületek
Az oldatok.
Az anyag szerkezete.
Áramlástani alapok évfolyam
Az anyagi rendszer fogalma, csoportosítása
A folyadékállapot.
Az anyagi rendszer fogalma, csoportosítása
Mi a neve az üvegben levő folyadéknak?
3. óra Belépés a részecskék birodalmába
Belépés a részecskék birodalmába
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Híg oldatok tulajdonságai
OLDATOK.
Híg oldatok tulajdonságai
Előadás másolata:

2005. 09. 28. KOLLOID OLDATOK

Heterogén rendszerekben A többkomponensű anyagi rendszerek csoportosítása részecske mérete alapján: Heterogén rendszerekben a részecske méret 500 nm-nél nagyobb szabad szemmel vagy mikroszkóppal jól látható. Homogén rendszerekben a részecske méret 1 nm-nél kisebb a részecskék sem szabad szemmel sem mikroszkóppal nem észlelhetők. Kolloid oldatoknak Az 1-500 nm átmérőjű oldott részecskéket tartalmazó oldatok sem szabad szemmel sem fénymikroszkóppal nem különböztethetők meg az oldott részecskék.

Kolloid oldatok némely tulajdonságban hasonlíthatók a valódi oldatokhoz. Az eltérő fizikai tulajdonságokat a diszpergált részecskék mérete okozzák. Kis tömeg és a nagy fajlagos felület. Diszpergáló fázis: az oldószer Diszpergált anyagnak: az oldott anyag

Kolloid oldatok tulajdonságai Tyndall jelenség: A kolloid rendszeren átbocsátott fény a nagyméretű oldott részecskék felületén szóródik, úgy látjuk, hogy a részecskék világítani kezdenek a beeső fény hatására. Valódi tiszta oldatoknál a fényszóródás nélkül halad tovább a fény.

Oldatokban az oldószer és oldott anyag részecskéi állandó diffúz mozgásban vannak. Brown-mozgás: A részecskék rendezetlen mozgása. A kolloid oldatokban a nagyméretű oldott részecskék a méretüktől függően ülepednek le az edény aljára.

A nagy fajlagos felület miatt a kolloid rendszerek adszorpciós készsége nagy. A nagy felületi energia csökkenését a részecskék összetapadásával aggregációjával kívánják elérni Koaguálás: Olyan folyamat, melynek során a kolloidok kiválnak az oldatból aggregáció útján.

Kolloidok csoportosítása A kolloid rendszerek csoportosítása a diszpergáló anyag és a diszpergáló fázis halmazállapota szerint történik. Aeroszol: Egy gázhalmazállapotú rendszerbe diszpergálunk szilárd vagy folyadék anyagokat. (pl. füst, köd) Emulziók: Folyadékban diszpergálunk szilárd anyagot vagy folyadék cseppeket. Emulzifikáló anyag: a stabil emulzió képződéséhez szükséges segédanyag. Szolok: szilárd anyagban diszpergált folyadékcseppek

Jól ismert példa a köd. Ez egy aeroszol, melynek diszperziós közege gáz (a levegő) a diszperziós fázis pedig folyadék (víz). Persze a valóságban mindenféle "egyéb" is megtalálható benne, különösen a városi szennyezett levegőben Ugyancsak jól ismert példa a füst. Ez is egy aeroszol, melynek diszperziós közege gáz (a levegő) a diszperziós fázis pedig szilárd (pl. koromszemcsék). A városok szennyezett levegőjében a füst és a köd gyakran jelentkezik együtt. Ezt nevezik szmognak. Kedvezőtlen időjárási helyzetben súlyos problémákat okoz.

Mindenki látott már tejszínhabot (ha nem is ilyen mikroszkópos felvételen). Ez a hab egy olyan diszperz rendszer, melynek diszperziós közege folyadék (maga a tejszín) a diszperziós fázis pedig gáz (ha "hagyományos" módon verjük fel akkor levegő, habszifonban készítve pedig dinitrogén-oxid). Majonéz is előfordul a legtöbb háztartásban. Ez egy olyan emulzió, melynek diszperziós közege is folyadék (víz) és a diszperziós fázis is folyadék (olaj). Persze a valóságban ez is tartalmaz egyéb anyagokat is, (főleg a boltban vásárolt változat).

Nem annyira ismert anyag, mint az előzőek a vízben diszpergált ezüst-klorid. (Azért nem olyan bonyolult anyag, "házilag" is könnyen előállítható ha konyhasó oldatba "lápiszt" (ezüst-nitrát oldatot) cseppentünk. Ez egy olyan lioszol, melynek diszperziós közege folyadék (víz) a diszperziós fázis pedig szilárd (nagyon kis méretű ezüst-klorid szemcsék) Az építkezéseknél használt "purhab" is az ismert anyagok közé tartozik. (A mikroszkópos metszeti képen jól látszik szerkezete.) Ez a megszilárduló hab, egy olyan diszperz rendszer, melynek diszperziós közege szilárd (műanyag - poliuretán) a diszperziós fázis pedig (valamilyen semleges, a habosító adalékból felszabaduló) gáz.

Az opál nevű féldrágakövet ékszerekben használják Az opál nevű féldrágakövet ékszerekben használják. Ez egy olyan szilárd gél, egy olyan diszperz rendszer, melynek diszperziós közege szilárd (szilicium-dioxid) a diszperziós fázis pedig folyadék (víz). A füstüveget többek között lámpaburákhoz használják. Ez egy xeroszol, olyan szilárd diszperz rendszer, melynek diszperziós közege szilárd (üveg) a diszperziós fázis ugyancsak szilárd (az üvegben eloszlatott átlátszóságot rontó szilárd szemcsék).

diszpergáló fázis diszpergált anyag kolloid neve példa gáz folyadék aeroszol köd gáz szilárd aeroszol füst folyadék gáz hab tejszínhab folyadék folyadék emulzió majonéz , tej folyadék szilárd szol AgCl(sz) (vízben), sár szilárd gáz hab műanyag habok szilárd folyadék gél zselé, sajt Szilárd szilárd szol zárványok, színes üveg

Hidrofil kolloidok Hidrofil kolloidok: Az olyan kolloidok amelyekben a víz molekulák és a diszpergált részecskék között erős kölcsönhatás alakul ki. Stabilak: A kialakult erős kölcsönhatás miatt. A diszpergált részecskék a nagy felületükön vízmolekulákat adszorbeálnak, így megakadályozzák a részecskék összetapadását. Például: fehérjék vizes oldata, keményítő vizes oldata, zselatin

Aggregációt elősegítése Ha olyan anyagot juttatunk az oldatba, amelyek megkötik a víz molekulákat, akkor az a diszpergált részecskék összetapadnak. Kisózás: Ionvegyületet juttatunk az oldatba azok teljes mértékben disszociálnak majd a disszociált ionok hidratálódnak A diszpergált részecskék összetapadnak, koagulálódnak. Reverzibilis folyamat Ha valamilyen fizikai módszerrel eltávolítjuk az oldott ionokat, a kolloid részecskék újból diszpergálódnak.

Hidrofób kolloidok Hidrofób kolloidok: Amikor a víz, mint diszpergáló fázis és a diszpergált részecske között nem jön létre kölcsönhatás Nem stabilak: könnyen elválik a két összetevő egymástól. Például: Túltelített oldatok, arany vízben, Fe(OH)3 oldat

Túltelített oldatokból gyors kristályosodás esetén csak kisméretű kristályok keletkeznek. Ha a kristályok mindegyike vagy pozitív, vagy negatív töltésű akkor az ilyen kolloidok stabilak, mivel az azonos töltésű részecskék taszítják egymást. A kolloid rendszerek összességében semlegesek, de a pozitív és negatív töltések eloszlása a kolloid rendszeren belül nem azonos. Ha elektromos erőtérbe helyezzük, jól megfigyelhető, hogy a részecskék attól függően, hogy milyen töltésűek az ellentétes pólus felé vándorolnak

Asszociációs kolloidok Micellák: Az olyan molekulák amelyek hidrofil (karboxil csoport) és hidrofób (hosszú alkillánc) csoportokat is tartalmaznak vízben való oldásukkor óriás molekulákat hoznak létre