Egyenáram KÉSZÍTETTE: SZOMBATI EDIT
1. Elektromos áram EGYENÁRAM GONDOLATI KÍSÉRLET Ahhoz hogy megértsük az elektromos áram fogalmát, képzeljük el, hogy egy hosszú padot telerakunk pingpong labdával. Mivel a pad vízszintes a pingpong labdák nyugalomban vannak. Döntsük meg hosszában a padot! A pad megdöntésének pillanatában az összes pingpong labda megindul az egyik irányban. Minél jobban megdöntjük a padot, annál gyorsabban gurulnak le a pingpong labdák. KAPCSOLAT AZ ELEKTROMOS ÁRAMMAL A vezető (hosszú pad) belsejében szabadon mozgó elektronok vannak (pingpong labdák). Ha a vezető két végére feszültséget, azaz potenciálkülönbséget kapcsolunk (megdöntjük a padot), akkor az elektronok egy adott irányban elkezdenek áramolni. EGYENÁRAM
1. Elektromos áram EGYENÁRAM ELEKTROMOS ÁRAM A töltések egyirányú, rendezett mozgását elektromos áramnak nevezzük. Az elektromos áram potenciálkülönbség hatására jön létre. (Ha nincs potenciálkülönbség, nem „folyik” az áram. Ha nem döntöm meg a padot, nem jönnek mozgásba a pingpong labdák.) Akkor nagyobb az elektromos áram, ha minél intenzívebb a töltések áramlása. Az elektromos áram lehet - egyenáram, ha a töltések mozgása mindig egy adott irányban történik - váltakozó áram, ellenkező esetben EGYENÁRAM
1. Elektromos áram EGYENÁRAM ELEKTROMOS ÁRAM Elektromos áram folyhat - szilárd halmazállapotú anyagban fémben, ebben a leggyakrabban, mivel jó vezetők fában, bár szigetelő anyag, de folyhat benne áram - folyékony halmazállapotú anyagban akkumulátorok, elemek vízben, a sós víz kifejezetten jól vezeti az áramot - gáz/légnemű halmazállapotú anyagban villámcsapáskor levegőben, neoncsövek esetén neongázban - plazma halmazállapotú anyagban mivel a plazma halmazállapotú anyag ionokat tartalmaz, a legtökéletesebb vezető EGYENÁRAM
2. áramerősség EGYENÁRAM ÁRAMERŐSSÉG Az elektromos áram nagyságát kifejező mennyiség. Megmutatja, hogy egy adott keresztmetszeten egy másodperc alatt hány C töltésmennyiség áramlik át. Jele: I. Mértékegysége: A. Képlete: I=Q/t. 1 A az áramerősség akkor, ha az adott keresztmetszeten 1 s alatt 1C töltésmennyiség áramlik át. ÁRAMERŐSSÉG A HÉTKÖZNAPOKBAN A EGYENÁRAM
3. EGYSZERŰ ÁRAMKÖR EGYENÁRAM Elektromos áram csak zárt „körben”, úgynevezett áramkörben tud tartósan folyni. EGYSZERŰ ÁRAMKÖR RÉSZEI FESZÜLTSÉGFORRÁS Ez biztosítja azt, hogy az áramkörben áram folyjék. FOGYASZTÓ Olyan eszköz, amely az elektromos áram energiáját egy számunkra hasznos energiává alakítja át. Pl. izzó, vasaló, hűtő, televízió, stb. VEZETÉK Az az eszköz, ami az áramkört zárttá teszi, illetve összeköti a feszültségforrást a fogyasztóval. EGYENÁRAM
4. OHM TÖRVÉNYE EGYSZERŰ ÁRAMKÖRRE Mivel az elektromos áram feszültség hatására jön létre, érthető, hogy minél nagyobb a feszültség, annál nagyobb az áramerősség. OHM TÖRVÉNYE ( EGYSZERŰ ÁRAMKÖRRRE) Egy fogyasztón „eső” feszültség és a rajta átfolyó áramerősség egyenesen arányosak, hányadosuk állandó. Ez az állandó fogyasztó ellenállása. GEORG SIMON OHM (1789-1854) EGYENÁRAM
5. ellenállás Amikor az elektromos áram, azaz az egy irányban, rendezetten mozgó töltések áthaladnak egy anyagon, akkor a töltések folyamatosan ütköznek az anyag atomjaival. Tehát az anyag akadályozza az elektronok áramlását. Az anyagnak ez az elektronok áramlását akadályozó tulajdonságát ellenállásnak nevezzük. Az anyag ellenállása függ → a vezető hosszától (egyenesen arányosan) → a vezető keresztmetszetétől (fordítottan arányosan) → a vezető anyagi minőségétől, 0 → a vezető hőmérsékletétől magasabb hőmérsékleten nagyobb, alacsonyabb hőmérsékleten kisebb az ellenállás EGYENÁRAM
GUSTAV ROBERT KIRCHHOFF 6. KIRCHHOFF TÖRVÉNYEK KIRCHHOFF I. TÖRVÉNYE – CSOMÓPONT TÖRVÉNY - EGY ÁRAMKÖRI CSÓMÓPONTRA IGAZ - A CSOMÓPONTBE BEFOLYÓ ÁRAMERŐSSÉGEK ÖSSZEGE EGYENLŐ A CSOMÓPONTBÓL KIFOLYÓ ÁRAMERŐSSÉGEK ÖSSZEGÉVEL: - HA A BEFOLYÓ ÁRAMOKAT „+” ELŐJELLEL, A KIFOLYÓ ÁRAMOKAT „–” ELŐJELLEL LÁTJUK EL, AKKOR EGY CSOMOÓPONTRA VONATKOZÓAN: - TÖLTÉSMEGMARADÁST FEJEZ KI: AMENNYI TÖLTÉS BEFOLYIK EGY CSOMÓPONTBA, ANNYI KI IS FOLYIK ONNAN. GUSTAV ROBERT KIRCHHOFF (1824-1887) EGYENÁRAM
6. KIRCHHOFF TÖRVÉNYEK EGYENÁRAM KIRCHHOFF II. TÖRVÉNYE – HUROKTÖRVÉNY - EGY ÁRAMKÖRI HUROKRA IGAZ - EGY HUROKBAN A FESZÜLTSÉGFORRÁSOK ÁLTAL TERMELT FESZÜLTSÉGEK ÖSSZEGE MEGEGYEZIK A HUROK EGYES EELENÁLLÁSAIN ESŐ FESZÜLTSÉGEK ÖSSZEGÉVEL: - ENERGIAMEGMARADÁST FEJEZ KI: EGY ÁRAMKÖRI HUROKBAN A FESZÜLTSÉGFORRÁSOK ÁLTAL TERMELT ENERGIA MEGEGYEZIK AZ EGYES ELLENÁLLÁSOKON FELHASZNÁLÓDÓ ENERGIÁVAL GUSTAV ROBERT KIRCHHOFF (1824-1887) EGYENÁRAM
7. ELLENÁLLÁSOK KAPCSOLÁSA, Eredő ellenállás Egy áramkörben akár több ellenállás is szerepelhet. Ilyenkor a több ellenállás egyetlen ellenállással helyettesíthető úgy, hogy közben nem változik az áramkör feszültsége és áramerőssége. Ezt az egy ellenállást EREDŐ ELLENÁLLÁSnak nevezzük. Az ábrán például az R1, R2, R3, R4, R5 ellenállásokat Re eredő ellenállással helyettesítjük. Az eredő ellenállás a részellenállások ismeretében kiszámolható. EGYENÁRAM
7. Ellenállások kapcsolása SOROS KAPCSOLÁS Az elektromos áramnak egy iránya van. Nincsenek benne elágazások. Ezért mindegyik ellenálláson ugyanakkora erősségű áram folyik át. Ha az áramkör valahol megszakad, az egész áramkörben nem folyik áram. Az egyes ellenállásokon eső feszültségek összeadódnak. Az eredő ellenállás a részellenállások összegével egyenlő. Az eredő ellenállás valamennyi részellenállásnál nagyobb. EGYENÁRAM
7. Ellenállások kapcsolása PÁRHUZAMOS KAPCSOLÁS EGYENÁRAM
8. Áramerősség mérése EGYENÁRAM
9. feszültség mérése EGYENÁRAM
10. feladatok EGYENÁRAM