Szervopneumatika
A pneumatikus rendszerek tulajdonságai – összehasonlítás Az iparban a pneumatikus hajtás mellett a fogasléces, orsós, valamint lineáris hajtás használatos. A pneumatikus aktuátorok mellett szól, hogy túlterhelésre nem érzékenyek, és tartósan üzemeltethetők a megadott legnagyobb teljesítményértéken is. Mindemellett robosztus, jó dinamikájú és magas teljesítmény-súly arányúak. A többi hajtásmóddal szemben hátrányukként a terheléssel szembeni alacsony merevség, a nehézkes szabályozhatóság, valamint az alacsony hatásfok említhető.
Elektromos teljesítmény erősítő Pneumatikus, szervopneumatikus rendszerek Elektromos teljesítmény erősítő Szervo-szelep Munka- henger Terhelés Szabályozatlan pneumatikus hajtás blokkdiagramja A pneumatikus szervo rendszerek legnagyobb hátrányai a felépítésükből eredő nemlinearitások. A pneumatikus szervo rendszerben több nemlinearitás is felfedezhető: térfogatáram-nyomás viszony a változó átáramlási keresztmetszetű szervoszelep következtében, a mozgó dugattyú tömítése és az azzal érintkező hengerfal közötti nemlineáris súrlódás (stick slip), a levegő összenyomhatóságának nemlineáris kapcsolata.
Szervoszelepek Forgatott szeleptest (Servo valve) Lineárisan mozgatott szeleptest (Linear servo valve)
A szervopneumatikus hajtás modellje Pneumatikus rendszer szabályozásának struktúrája 1. Pozíció szabályozó Nyomás szabályozó Előírt pozició Kompenzáló erő x p1 p2 u F
A szervopneumatikus hajtás modellje pS pR u A munkahenger és a szelep tömegáramainak sematikus ábrája
A szervopneumatikus hajtás modellje A dugattyú mozgása a következő differenciálegyenlettel írható fel: a munkahenger dugattyújának gyorsulása m a munkahenger dugattyújának tömege A nemlineáris FRS súrlódási erő a következő függvénnyel írható le: Statikus súrlódó erő sebesség a statikus súrlódás határán c: viszkózus súrlódási tényező d: száraz súrlódási tényező
A szervopneumatikus hajtás modellje Nyomáskialakulás a munkahengerben A kamrák nyomása függ: A kamrákba be-, és kiáramló levegő mennyiségétől Dugattyú elmozdulásától Energia-, és tömegmegmaradás törvényéből levezetve, és a változást kifejezve bal oldalon a nyomás, jobb oldalon a tömeg illetve az elmozdulás idő szerinti deriváltjával: Tömegáram egyenletek és értékekre:
A szervopneumatikus hajtás modellje A pneumatikus rendszerben áramló levegőmennyiségek vizsgálata A szelep mágnes által működtetett dugattyúja u elmozdulás hatására pS, és pR ágakon keresztül gondoskodik a munkahenger működéséről. Ahogy az a 3. ábrán látható a szervoszelep belsejében az éleknél .. tömegáramok lépnek fel, melyek számíthatók: pa Nyomás a munkahenger “a” kamrájában pb Nyomás a munkahenger “b” kamrájában pS Táplevegő nyomása pR Távozó felesleges levegő nyomása TS Táplevegő hőmérséklete TR Távozó felesleges levegő hőmérséklete Ta Hőmérséklet a munkahenger “a” kamrájában Tb Hőmérséklet a munkahenger “b” kamrájában Tömegáramok a szelepek éleinél (i=1..4) A tömegáramok (i=1..4) áramlási tényezője R Levegő specifikus gázállandója
A szervopneumatikus hajtás modellje Az átfolyási tényező: Nyomásarány a szelep dugattyújának egyes éleinél Nyomás a szelep dugattyújának kiválasztott ”éle” előtt Nyomás a szelep dugattyújának kiválasztott ”éle” után pcrit A tömegáram függvény kritikus nyomásviszonya 0 = 0,484 A tömegáram függvény maximális értéke
A szervopneumatikus hajtás szimulációs modellje (MATLAB – Simulink modell)
Szabályozástechnika Csúszómód (sliding mode) szabályozás Robosztus szabályzási módszer, a szabályzó jelet kapcsolgatás útján változtathatjuk e e0 ep1 ep2 . S=e+λe=0
Csúszómód szabályzás A szabályzás hatásvázlata
Csúszómód szabályzás Pozíció -idő Sebesség -idő Kapcsolójel -idő
Csúszómód szabályzás Pozíció –sebesség trajektória