Gazdaságstatisztika 10. előadás
Gazdaságstatisztika VALÓSZÍNŰSÉGI VÁLTOZÓ, ELMÉLETI ELOSZLÁSOK Valószínűségszámítási alapok
Nyitó gondolatok A valószínűség értelmezési nehézségei Mekkora a valószínűsége, hogy egy szabályos kockával 6-ost dobunk? Mekkora a valószínűsége, hogy holnap esni fog az eső? Mi a valószínűség? Relatív gyakorisági alapon? Hitünk foka szerint? Gazdaságstatisztika
Determinisztikus és sztochasztikus jelenségek Kezdeti, kiindulási feltételekből (peremfeltételekből) mennyire tudunk következtetni a vizsgált jelenség (esemény) végkimenetelére? Két lehetőség Ha a peremfeltételeket fel tudjuk tárni, és ismertek a jelenség lefolyásának szabályai is, és ezekből a jelenség végkimenetele nagy pontossággal megadható, akkor a jelenség determinisztikus. Más szavakkal, a peremfeltételek és a jelenség lefolyásának szabályai determinálják (egyértelműen meghatározzák) a jelenség kimenetelét. Pl. Ohm-törvénye. A peremfeltételeket nem ismerjük, vagy nem akarjuk feltárni, továbbá nem ismerjük a jelenség lefolyásának pontos törvényszerűségeit, ezért a jelenség pontos kimenetele nem határozható meg. Ezek a sztocasztikus jelenségek. Pl. BUX index alakulása. Gazdaságstatisztika
Alapfogalmak Tömegjelenség Véletlen jelenség Valószínűségszámítás Azonos körülmények között akárhányszor lejátszódhat Véletlen jelenség Kimenetelét a figyelembe vehető tényezők összessége nem határozza meg egyértelműen Valószínűségszámítás A véletlen tömegjelenségek törvényszerűségeinek feltárásával, leírásával foglalkozik Véletlen kísérlet Egy véletlen tömegjelenséget mesterségesen előidézünk, vagy spontán megfigyelünk Elemi esemény Egy véletlen kísérlet egy lehetséges kimenetele Gazdaságstatisztika
Alapfogalmak Eseménytér Esemény Biztos esemény Lehetetlen esemény Az összes lehetséges elemi eseményből álló halmaz. Jele: (jegyzetben H) Esemény A véletlen kísérlet lefolytatása után vagy bekövetkezik, vagy nem. Általában A, B, C, … jelöljük. részhalmazai az események Egy A részhalmaz (esemény) akkor következik be, ha olyan elemi esemény következik be, amely eleme A-nak Biztos esemény Maga is egy esemény, egy olyan esemény, amely biztosan bekövetkezik Lehetetlen esemény Az üres halmazt – amely nem tartalmazza egyetlen elemét sem – mint eseményt, lehetetlen eseménynek hívjuk és -val jelöljük. Az A esemény maga után vonja B eseményt Ha valahányszor, amikor A bekövetkezik, bekövetkezik B is. Jelölése: A B. Gazdaságstatisztika
Műveletek eseményekkel Komplementer esemény Az esemény az eseménytér mindazon elemeit tartalmazza, melyek az A eseményben nincsenek benne, de -hoz tartoznak. Az -t az A esemény komplementerének nevezzük. Események összege (egyesítése) Azt az eseményt, hogy az A és B esemény közülük legalább az egyik bekövetkezik, az A és B esemény összegének nevezzük, és A+B-vel (vagy AB-vel) jelöljük. Az A+B esemény tehát akkor következik be, ha vagy A, vagy B, vagy mindkettő bekövetkezik. Események szorzata (közös része) Azt az eseményt, amely akkor következik be, ha az A és a B esemény is bekövetkezik, azaz a két esemény egyszerre következik be, az A és B események szorzatának nevezzük, és AB-vel (vagy AB-vel) jelöljük. Előfordulhat, hogy a két esemény közös része az üres halmaz, ilyenkor a két esemény sosem következhet be egyszerre. Ekkor az A-t és B-t egymást kizáró (diszjunkt) eseményeknek nevezzük. Gazdaságstatisztika
Műveletek eseményekkel Események különbsége Azt az eseményt, ami akkor következik be, ha az A esemény bekövetkezik, de B nem, az A és B események különbségének nevezzük, s A-B-vel (vagy A\B-vel) jelöljük. Teljes eseményrendszer Egy kísérlettel kapcsolatos B1, B2, …, Bn események, melyek közül egyik sem lehetetlen esemény, teljes eseményrendszert alkotnak, ha egymást páronként kizáró események, s összegük a biztos esemény. Gazdaságstatisztika
Műveletek eseményekkel - Példa A valószínűségi kísérlet legyen egy szabályos kockával történő dobás Egy dobás kimenetele legyen a felső lapon látható pontszám Ekkor az eseménytér: : a felső lapon látható pontszám i, Határozzuk meg a következő eseményeket (mint halmazokat) B: páros számot dobunk C: a dobott szám kisebb 3-nál D: 1-et, 4-et, vagy 5-öt dobunk Gazdaságstatisztika
A valószínűség fogalma Két megközelítés Tapasztalati valószínűség Matematikai valószínűség Véletlen kísérleteket végzünk (sokszor) és azt vizsgáljuk, hogy egy A esemény az eseték hány százalékában következik be. A tapasztalati valószínűség az a számérték, amely körül a véletlen esemény relatív gyakorisága ingadozik. Megfigyelés n-szer Az A esemény gyakorisága Az A esemény relatív gyakorisága Gazdaságstatisztika
A valószínűség fogalma Valószínűségi mező Az hármas : Eseménytér, azaz az összes lehetséges elemi esemény halmaza : Események szigma algebrája, egy felett definiált algebra P: Valószínűségi mérték Valószínűségi mérték (matematikai valószínűség) i.) ii.) iii.) Ha egymást páronként kizáró események, akkor i.) –iii.) Kolmogorov axiómái A jegyzetben a iii.) axióma Ha A és B egymást kizáró események, azaz AB = 0, akkor P(A+B)= P(A) + P(B). Gazdaságstatisztika
Szigma-algebra (kiegészítő anyag) Egy véletlen kísérlet esetén a megfigyelhető - azaz vizsgálataink szempontjából fontos - események összessége általában nem tartalmazza az eseménytér összes részhalmazát. Ha az eseménytér végtelen sok elemi eseményből áll, akkor nem vehetjük figyelembe az eseménytér összes részhalmazait, mert az halmazelméleti nehézségekbe ütközne. Ekkor az eseménytér részhalmazainak egy olyan összességét tekintjük, amely elég tág halmaz ahhoz, hogy minden megfigyelhető eseményt tartalmazzon, de elég szűk ahhoz, hogy halmazelméleti problémákat ne okozzon. Matematikai szempontból célszerű azt az elvárást támasztanunk, hogy a vizsgált események összessége zárt legyen a megismert, eseményeken értelmezett műveletekre. E megfontolások alapján vezetjük be a szigma-algebra fogalmát. Gazdaságstatisztika
Szigma-algebra (kiegészítő anyag) Az halmazrendszert feletti szigma algebrának nevezzük, ha hatványhalmazának nem üres, azaz Bármely esetén Ha megszámlálhatóan sok halmaz, akkor azaz zárt a megszámlálható unióképzésre. Gazdaságstatisztika
Kolmogorov Andrej Nyikolajevics Kolmogorov (1903-1987) Mértékelmélet Az axiomatikus valószínűségelmélet megalapítója Gazdaságstatisztika
Néhány alaptétel A lehetetlen esemény valószínűsége nulla Bizonyítás Tetszőleges A eseményre: A és diszjunkt események, ezért a iii.) axióma szerint ebből . Ha az A1, A2, ….An események teljes eseményrendszert alkotnak, akkor A1, A2, ….An teljes eseményrendszer => A1, A2, ….An páronként diszjunktak és A ii.) és iii.) axióma alapján: ii.) iii.) Gazdaságstatisztika