A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Slides:



Advertisements
Hasonló előadás
A halmazállapot-változások
Advertisements

Készítette: Bráz Viktória
Kristályrácstípusok MBI®.
Rácstípusok.
SZILÁRD ANYAGOK OLDATOK
Homogén rendszerek- ELEGYEK- OLDATOK
1. Metallográfiai alapfogalmak
Név: Le-Dai Barbara Neptun-kód: IEDZ4U Tantárgy: Ásvány és kőzettan
Elektromos alapismeretek
Atomrácsos kristályok
A KRISTÁLYSZERKEZET Szerkezeti anyagok: -kristályos szerkezetek, -üvegek, műanyagok, elasztomerek. Mi készteti az atomokat a kristályos szerkezet.
A kémiai tulajdonságok, az elektronegativitás és a főbb kötéstípusok
Szilárd halmazállapot
Atomok kapcsolódása Kémiai kötések.
Kémiai kötések.
A Molekularács A környezetünkben lévő anyagok nagy része molekulákból épül fel. 1 részük szobahőmérsékleten gáz halmazállapotú. Megfelelő hőmérsékleten.
A HIDROGÉN.
Vegyészeti-élelmiszeripari Középiskola CSÓKA
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Ötvözetek ötvözetek.
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Kémiai baleset egy fővárosi gimnáziumban, öten megsérültek
Ma igazán feltöltődhettek!
Mit tudunk már az anyagok elektromos tulajdonságairól
Olvadás Topenie.
A fémrács.
8. Szilárd anyagok Kristályos anyagok: határozott olvadáspont, hasad, elemi cella, rácstípus, szimmetria, polimorfizmus (pl. NaCl, SiO2) Amorf anyagok:
Halmazállapot-változások
Kémiai kötések Kémiai kötések.
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Az anyagok részecskeszerkezete
Az anyagszerkezet alapjai II.
HŐTAN 3. KÉSZÍTETTE: SZOMBATI EDIT
Egyszerű ionok képződése
Halmazállapotok Gáz, folyadék, szilárd.
Halmazállapotok Kristályos anyagok, atomrács
A kvantum rendszer.
Halmazállapotok Gáz Avogadro törvénye: azonos nyomású és hőmérsékletű gázok egyenlő térfogatában – az anyagi minőségtől, molekula méretétől függetlenül.
Összefoglalás.
Ionok, ionvegyületek Konyhasó.
ANYAGI HALMAZOK Sok kémiai részecskét tartalmaznak (nagy számú atomból, ionból, molekulából állnak)
Általános kémia előadás Gyógyszertári asszisztens képzés
Helyük a periódusos rendszerben Felhasználásuk Közös tulajdonságaik Kivételek Szabadon mozgó elektronfelhő Fémes kötés.
Atomkristályok. Az atomkristály Atomtörzsek rendezett halmaza: benne nem meghatározott számú atomot kovalens kötések rögzítenek.
Molekula A molekula semleges kémiai részecske, amely két vagy több atom összekapcsolódásával alakul ki.
Fémek. Az elemeket 3 csoportba osztjuk: fémek Félfémek vagy átmeneti fémek nemfémek.
Szilárd anyagok: 1.Felépítő részecskéik: a.Atomok: pl.: gyémánt: C, szilícium: Si, kvarc: SiO 2 b.Ionok: pl.:, mészkő: CaCO 3,mész: CaO, kősó: NaCl c.Fém-atomtörzsek:
Halmazállapotok Kristályos anyagok, atomrács
GÁZOK, FOLYADÉKOK, SZILÁRD ANYAGOK
Korszerű anyagok és technológiák
Kovalenskötés II. Vegyületet molekulák.
Kristályrács molekulákból
Atomrácsos kristályok
BELÉPÉS A RÉSZECSKÉK BIRODALMÁBA
Másodrendű kötések molekulák között ható, gyenge erők.
Molekulák A molekulák olyan kémiai részecskék, amelyekben meghatározott számú atomot kovalens kötés tart össze. pl.: oxigén: O2; víz: H2O; ammónia: NH3;
Áramlástani alapok évfolyam
Ágotha Soma Általános és szerves kémia
A szilárd állapot.
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
HalmazállapotOK.
Összeállította: J. Balázs Katalin
Az anyagi rendszer fogalma, csoportosítása
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Kémiai kötések.
Az anyagi rendszer fogalma, csoportosítása
3. óra Belépés a részecskék birodalmába
Belépés a részecskék birodalmába
HalmazállapotOK.
Kémiai alapismeretek Ismétlés évfolyam.
Előadás másolata:

A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A szilárd állapot A szilárd állapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Szobahőmérsékleten és légköri nyomáson szilárd halmazállapot létrejöttének feltétele, hogy a szilárd részecskék között olyan nagy legyen a kohézió, hogy a mozgást nagymértékben korlátozni tudja. Ez akkor következik be, ha az anyagi halmazon belül a részecskék elsőrendű kötésekkel (kémiai kötésekkel) kapcsolódnak össze (pl. a fématomok közötti fémes kötés, a sókban található ionkötés valamint a gyémántban a C-atomok közötti kovalens kötés); a halmaz erősen poláris molekulákból áll, és az egyes molekulák tömege sem kicsi; a halmaz apoláris molekulákból áll ugyan de a molekulák tömege igen nagy, és a molekulák elektronfelhője könnyen polarizálható. A szilárd anyagok: önálló alakkal rendelkeznek önálló térfogatuk van összenyomással szemben ellenállók bizonyos határig az alakváltoztató erő hatására nem szenvednek maradandó alakváltozást, hanem az erőhatás megszűnte után visszanyerik eredeti alakjukat

A kristályszerkezet A kristályok a részecskék szabályszerű egymás mellé rendeződésével alakulnak ki. A kristályrács két szomszédos elemét, ahol az anyagot felépítő részecskék találhatók, rácspontoknak nevezzük. A kristályrácsot geometriailag is jellemezhetjük, forma, rácspontok távolsága (rácsállandók) szerint.

Néhány példa különböző kristályrácsra Hatszöges (hexagonális), legszorosabb illeszkedésű rács Szabályos térben centrált kockarács 1958 áprilisában nyílt meg Brüsszelben a történelem egyik leghíresebb világ-kiállítása, amelynek jelképe, a vasrács felépítését pontosan utánzó Atomium. Szabályos, lapon centrált kockarács A vegyész számára a csoportosításhoz a rácspontok minősége és a rácsot összetartó erő fontosabb szempont.

1. Az ionrács A rácspontokban pozitív és negatív töltésű ionok vannak. Összetartó erő: elektrosztatikus vonzás A nagy elektrosztatikus erő miatt az ionrácsos vegyületek keménysége nagy, olvadás- és forráspontjuk ugyancsak nagy, bár elektromos töltésű részecskékből állnak, szilárd állapotukban a részecskék erős helyhez kötöttsége miatt az elektromos áramot nem vezetik. Ha viszont az ionkristályt megolvasztjuk vagy feloldjuk, az ionok a rácspontokból kiszakadva elmozdulhatnak a helyükről. Ezért az ion vegyületek olvadékai és oldatai vezetik az elektromos áramot. Példa: az ionkötésű vegyületek: NaCl, CaCl2

2. Az atomrács A rácspontokban kovalens kötésben lévő atomok vannak. Összetartó erő: kovalens kötés A kovalens kötés – elsőrendű kötés lévén – igen erős. Ennek az a következménye, hogy az atomrácsos anyagok: rendkívül kemények magas az olvadás- és forráspontjuk. az elektromos áramot nem vezetik. Példa: az atomrácsban kristályosodó anyagokra: gyémánt, SiO2, ZnS stb.

3. A molekularács A rácspontokban kovalens semleges részecskék vannak. Összetartó erő: másodlagos kötések A másodlagos kötések az elsőrendű kötéshez képest gyengébbek. Ennek az a következménye, hogy a molekularácsos anyagok a többi szilárd anyaghoz viszonyítva: kevésbé kemények alacsonyabb az olvadás- és forráspontjuk. az elektromos áramot nem vezetik. Példa: H2O, S8, P4, nemesgázok (szilárd állapotban), szilárd CO2 stb. kén jég

4. A fémrács A rácspontokban kovalens pozitív atomtörzsek vannak. Összetartó erő: fémes kötés (közös, delokalizált elektronfelhő) A másodlagos kötések az elsőrendű kötéshez képest gyengébbek. Ennek az a következménye, hogy a molekularácsos anyagok a többi szilárd anyaghoz viszonyítva: keménységük változó (a Na, K pl. késsel vágható, míg pl. a W, a Cr igen kemény) Egyéb mechanikai tulajdonságaikban is nagy eltérések lehetnek (pl. nyújthatóság, rugalmasság stb.) olvadáspontjuk és forráspontjuk is változó (pl. az alkálifémek és az ólom már a Bunsen-égő lángjában is megolvaszthatók, ugyanakkor a W olvadáspontja 3000 °C feletti) az elektromos áramot jól vezetik Példa: Valamennyi szilárd állapotú fém ilyen szerkezetű.

Összefoglaló táblázat Rácspontban lévő részecske Összetartó erő Mechanikai tulajdonság Áram-vezetés Op. fp. Ionrács + és – ionok ionkötés (elektrosztatikus erő) kemény, rideg nem magas Atom-rács kötőállapotú atomok kovalens kötés kemények nagyon magas Molekula-rács semleges részecskék másodlagos kötések (van der Waals, H-kötés) puha alacsony Fémrács + fématom-törzsek fémes kötés (delokalizált elektronok) változó igen

Vegyes rácstípus, a grafit A grafit rétegrácsos anyag. Egy rétegen belül 3 elektron kovalens kötést hoz létre három másik szénatommal, és hatszöges hálót képez. Ez tehát atomrácsnak felel meg. A rétegek között a negyedik elektron delokalizált kötéssel tartja össze a rétegeket így fémes kötést hoz létre. Ez tehát fémrácsnak felel meg. A grafit tulajdonságai is vegyesek. A magas olvadáspont (≈ 3550 oC) az atomrácsra jellemző, az áramvezetés pedig a fémrácsra. Az egyes rétegek könnyen elcsúsznak egymáson, ezért lehet ceruzának használni. Ceruzahegyből kifaragva…