Idősorok elemzése Determinisztikus és sztochasztikus komponensek, előrejelzés autoregresszív modellel Forrás: Hidrológia II HEFOP oktatási segédanyag (www.vit.bme.hu)

Slides:



Advertisements
Hasonló előadás
I. előadás.
Advertisements

Statisztika II. I. Dr. Szalka Éva, Ph.D..
BECSLÉS A sokasági átlag becslése
Kvantitatív Módszerek
Kvantitatív módszerek
Anyagáramok meghatározásának hibája és a becslés pontosításának lehetőségei.
Mintavételi gyakoriság megválasztása
Anyagáramok meghatározásának hibája és a becslés pontosításának lehetőségei.
1. Bevezetés a waveletekhez (folytatás)
Felszíni és felszín alatti víz monitoring
Matematikai Statisztika VIK Doktori Iskola
Földrajzi összefüggések elemzése
Csoportosítás megadása: Δx – csoport szélesség
Becsléselméleti ismétlés
Összefüggés vizsgálatok x átlag y átlag Y’ = a + bx.
Gazdaságelemzési és Statisztikai Tanszék
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. IX.. Dr. Szalka Éva, Ph.D.2 Idősorok elemzése.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Előadó: Prof. Dr. Besenyei Lajos
III. előadás.
Regresszióanalízis 10. gyakorlat.
SPSS többváltozós (lineáris) regresszió (4. fejezet)
Kovarianciaanalízis Tételezzük fel, hogy a kvalitatív tényező(k) hatásának azonosítása után megmaradó szóródás egy részének eredete ismert, és nem lehet,
Statisztika II. VIII. Dr. Szalka Éva, Ph.D..
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Statisztika II. III. Dr. Szalka Éva, Ph.D..
Készítette: Kosztyán Zsolt Tibor
Kvantitatív módszerek
Kvantitatív módszerek
Budapesti Műszaki és Gazdaságtudományi Egyetem
A statisztikai próba 1. A munka-hipotézisek (Ha) nem igazolhatók közvetlen úton Ellenhipotézis, null hipotézis felállítása (H0): μ1= μ2, vagy μ1- μ2=0.
Egytényezős variancia-analízis
Nominális adat Módusz vagy sűrűsödési középpont Jele: Mo
Kvantitatív Módszerek
Idősor elemzés Idősor : időben ekvidisztáns elemekből álló sorozat
excel, (visual basic) makrók gyorstalpaló
Környezeti monitoring Feladat: Vízminőségi adatsor elemzése, terhelés (anyagáram) számítása Beadás: szorgalmi időszak vége (dec. 11.), KD: dec. 21.
Valószínűségszámítás
Felszíni víz monitoring
Többváltozós adatelemzés
Következtető statisztika 9.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Lineáris regresszió.
Két kvantitatív változó kapcsolatának vizsgálata
I. előadás.
Petrovics Petra Doktorandusz
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Regresszió-számítás március 30. Dr. Varga Beatrix egyetemi.
A számítógépes elemzés alapjai
Mintavételi hiba, hibaszámítás
Mintavételi hiba, hibaszámítás
Bevezetés, tippek Ea-gyak kapcsolata Statisztika II -más tárgyak kapcsolata Hogyan tanulj? Interaktív órák, kérdezz, ha valami nem világos! tananyag =előadások.
Gazdaságstatisztika Gazdaságstatisztika Korreláció- és regressziószámítás II.
Kvantitatív módszerek
A számítógépes elemzés alapjai
Lineáris regressziós modellek
Gazdaságstatisztika Konzultáció a korreláció- és regressziószámítás, idősorok elemzése témakörökből.
I. Előadás bgk. uni-obuda
Szabályozott és képes termékek/szolgáltatások, folyamatok, rendszerek
Dr. Varga Beatrix egyetemi docens
Trendelemzés előadó: Ketskeméty László
Alapfogalmak Matematikai Statisztika
Gazdaságinformatikus MSc
A Box-Jenkins féle modellek
2. Regresszióanalízis Korreláció analízis: milyen irányú, milyen erős összefüggés van két változó között. Regresszióanalízis: kvantitatív kapcsolat meghatározása.
Dr. Varga Beatrix egyetemi docens
Előadás másolata:

Idősorok elemzése Determinisztikus és sztochasztikus komponensek, előrejelzés autoregresszív modellel Forrás: Hidrológia II HEFOP oktatási segédanyag (www.vit.bme.hu)

Idősorok felbontása: Y(i) = T(i) + P(i) + A(i) T(i) trend komponens P(i) periodikus tag A(i) maradéktag determinisztikus sztochasztikus (autoregresszív és véletlen)

Trendszámítás Lineáris: T(i)=a0 + a1 i Nem lineáris: T(i)=a0 + a1 i + a2 i2 + … + an in Lineáris trend:

Példa: vízminőségi trend számítás Segédtáblázat: Évszám c [mg/l] t [év] ci-cátlag ti-tátlag (ci-cátlag)2 (ti-tátlag)2 (ci-cátlag)  (ti-tátlag) 1991 1992 …. 2000 20,3 12,7 1 2 10 +/- értékeket kapunk cátlag = tátlag =  = A trendvonal egyenlete:

A trend mértéke: P < 3 %/év kismértékű 3 < P < 7 %/év nagymértékű 7 < P < 15 %/év igen nagymértékű P > 15 %/év rendkívül nagymértékű -1.8 % /év +1.6 % /év

Ellenőrzés (regresszió számításból): Reziduális szórás (abszolút hiba) kifejezi, hogy a regressziós becslések átlagosan mennyivel térnek el az y megfigyelt értékeitől. Relatív szórás (relatív hiba) kifejezi, hogy a regressziós becslések átlagosan hány %-al térnek el az y megfigyelt értékeitől. Pearson-féle lineáris korrelációs együttható: Kovariancia Determinációs együttható:

A trend mértéke: P < 3 %/év kismértékű 3 < P < 7 %/év nagymértékű 7 < P < 15 %/év igen nagymértékű P > 15 %/év rendkívül nagymértékű -1.8 % /év → dC = -0.82 / 10év +1.6 % /év → dC = 0.1 / 10év D = r2 = 0.25, Se = 0.46 (dC = -0.82) D = r2 = 0.12, Se = 0.16 (dC = 0.1)

Power trend Általános formula: Linearizált: Szórás (hiba):

Periodikus komponens meghatározása

Sztochasztikus összetevők Véletlen tag (zaj) Autoregresszív komponens

Egylépéses autokorrelációs tényező Egylépéses AR modell: Kétlépéses AR modell:

AR, MA és ARMA modellek AR ( p ) : MA ( q ) : ARMA ( p, q ) : Stacionárius folyamat (kritériumok: állandó átlag és szórás) leírására szolgálnak. Az idősor zt aktuális eleme az előző elemek (AR) illetve az a normális eloszlású véletlen sorozat előző tagjainak (MA) lineáris kombinációjaként számítható ki. AR ( p ) : MA ( q ) : ARMA ( p, q ) : Az AR(0) modellt fehér zaj modellnek is nevezik :

Előrejelzés idősor modellekkel

Thomas-Fiering modell (Balaton természetes vízkészlet változásának előrejelzése)

Autokorreláció Egy idősor jelenlegi és későbbi értékei közötti kapcsolat mértékét fejezi ki, Idősoron belüli kapcsolat szorosságát jellemzi, Autokorrelációs tényező ( x(t) idősor, várható érték): Általános (k lépés): Autokorrelációs függvény: Egy idősor autokorreláció függvénye a  = 0 .. n értékekhez tartozó r autokorreláció tényezőkből áll.

Tipikus autokorreláció függvények -2 -1.5 -1 -0.5 0.5 1 1.5 2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Véletlenszerű (normális eloszlású független sorozat) -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Autokorrelált (véletlen sorozat mozgóátlaga) -1.5 -1 -0.5 0.5 1 1.5 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Periodikus (szinusz függvény, zajmentes)

Autokorrelációs függvény

Autokorrelációs függvény

Fehér zaj autokorreláció függvénye: Az xt stacionárius sztochasztikus folyamat gaussi fehérzaj, ha minden t-re standard normális eloszlású. Az xt sztochasztikus folyamat akkor stacionárius, ha az xt ( t  [ t1; t2 ]  T ) eloszlása független a [ t1; t2 ] kiválasztásától. Fehér zaj autokorreláció függvénye: -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Egy xt gaussi fehérzaj folyamat autokorreláció függvénye a Dirac-féle egységugrás függvény. if(t==0) r[t]=1; else r[t]=0; -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Egy valós fehérzaj folyamat autokorreláció függvénye csak a 0 helyen lép ki az Anderson-féle konfidencia intervallumból.

Autokorreláció figyelembe vétele a mintavételezésnél Az idősor elemei nem függetlenek Az észlelési adatok száma (elemszám, N) helyettesítendő N*-gal: ahol r(t) a t eltolású autokorrelációs tényező A szórás számítása: Vagyis, az effektív mintaszám egymástól nem független megfigyelési adatok esetén (Bayley & Hammersley, 1946): N* = N σ / σ*

Lettenmaier (1976) egylépéses autoregresszív modellel meghatározta az n és n* közötti összefüggést: n* < n Ahol: n a mintaszám, k a mintavételek közti intervallum, ρ az autokorrelációs tényező Effektív mintaszám (n*) az autokorrelációtól függően: n k ρ= 0,9 ρ= 0,7 ρ= 0,5 ρ= 0,3 ρ= 0,1 365 1 20 65 122 197 299 183 2 63 110 153 179 3 60 95 116 91 4 19 56 80 90 73 5 52 69 61 6 48 59 7 44 51 26 14 17 12 30 11

Mintavételi gyakoriság megválasztása Ha a cél: Átlag (középérték meghatározása Trend detektálása Folytonos idősor visszaállítása

Átlag becslése Mintanagyság meghatározása átlagbecsléshez egyszerű véletlen mintánál: N = a sokaság elemszáma n = a minta elemszáma σ = sokasági szórás D: a maximális hiba (hibahatár) vagy Autokorrelált (nem független) mintáknál: N → N* és σ → σ*

független és autokorrelált adatsor esetén Éves átlag becslésére vonatkozó standard hiba változása az effektív mintaszámtól függően, független és autokorrelált adatsor esetén ρ =0 ρ =0.3 ρ =0.5 ρ =0.7 n Sn/S1 n* 365 1,0 197 122 65 183 1,4 153 1,1 110 63 1,7 116 1,3 95 60 91 2,0 90 1,5 80 1,2 56 73 2,2 1,6 69 52 61 2,4 1,8 59 48 2,6 1,9 51 44 26 3,7 2,8 12 5,5 4,1 3,2 2,3 n - mintaszám, n* - effektív mintaszám, ρ - autokorrelációs tényező, S1 – éves átlag standard hibája n=365 mérési adatból, Sn – éves átlag standard hibája n (n*) mérési adatból

Trend detektálásához szükséges adatszám (független minták száma az N0 időtartam alatt) autokorrelációs tényező lépésköz (intervallum) szórás Lettenmaier (1976), Somlyódy et al. (1986)

Folytonos idősor előállítása diszkrét észlelésekből Nyquist tétele: Egy adott, frekvenciakorlátos spektrumú, folytonos idősor, amely az fk határfrekvencián túl nem tartalmaz spekrtális összetevőket, egyértelműen visszaállítható a t=fk/2 intervallumnál kisebb mintavételezési idejű diszkrét idősorból (Szőlősi-Nagy, 1976). A határfrekvencia (spektrumfüggvény) az idősor autokorreláció függvényének Fourier transzformáltjából állítható elő. Nyquist intervallum: Maximális időintervallum, mely esetén egyenlő időközönkénti mintavétellel a jel meghatározható. A mintában szereplő jel legmagasabb frekvenciájú összetevője kétszeresének a reciproka. folytonos jel, a jel Fourier transzformáltja: A jel sávszélessége (B), ahol Mintavételi frekvencia (határfrekvencia): Mintavételi időköz: