AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.

Slides:



Advertisements
Hasonló előadás
Utazás a sejtben Egy átlagos emberi sejt magja megközelítőleg 510-15 gramm mennyiségű és 1,8-2 méter hosszúságú (3000 millió bázispárnyi) DNS-ből,
Advertisements

Mutációk.
A B-sejt differenciáció antigén jelenlétében lezajló folyamatai
The key experiment of Nobumichi Hozumi and Susumu Tonegawa
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE
Elektroforézis Általában agaróz a hordozó
Monoklonális ellenanyagok
DNS replikáció DNS RNS Fehérje
A humán genom projekt.
A DNS Szekvenálás 2008 Géntechnikák labor.
SZERZETT IMMUNITÁS FELISMERÉS.
C mIg H mIg L TCR  TCR  T-SEJT  C V Antigén receptor TCR A B- ÉS T-SEJTEK ANTIGÉN FELISMERŐ RECEPTORAI HASONLÓ SZERKEZETŰEK TCR =  +  A.
AZ IMMUNGLOBULINOK SZERKEZETE ÉS FUNKCIÓJA
Az immunoglobulin szerkezete
A B-sejt differenciáció antigén jelenlétében lezajló folyamatai A B-sejt repertoire és az ellenanyag diverzitás növelése a periférián Alternatív splicing.
B SEJT AKTIVÁCIÓ.
B SEJT DIFFERENCIÁCIÓ A CSONTVELŐBEN
B LIMFOCITÁK IMMUNOLÓGIA INFORMATIKUS HALLGATÓKNAK Dr HOLUB MARCSILLA
Dr. Falus András egyetemi tanár B lymphocyták (ontogenezis, aktiváció, osztály/izotípus, humorális immunitás)
Dr. Falus András egyetemi tanár B lymphocyták (ontogenezis, aktiváció, osztály/izotípus, humorális immunitás)
Molekuláris genetika Falus András.
Antigén receptorok Antitest, T sejt receptor A repertoire (sokféleség) kialakulása Genetikai, Sejt- és Immunbiológiai Intézet Falus András.
Kedvenc Természettudósom:
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító.
Fluorescens in situ Hibridizáció
MUTÁCIÓ ÉS KIMUTATÁSI MÓDSZEREI
Dr. Falus András egyetemi tanár Genetikai, Sejt- és Immunbiológiai Intézet Semmelweis Egyetem Általános Orvostudományi Kar Antigénfelismerő receptorok.
Antigén receptorok Genetikai, Sejt- és Immunbiológiai Intézet.
Antigén-felismerő receptorok (BCR, TCR)
Poszttranszlációs módosítások Készítette: Cseh Márton
Transzpozonok, tumormarkerek
DNS chipek, DNS hibridizáció
Az izomdystrophiák molekuláris genetikai vizsgálata
AZ IMMUNOGLOBULIN GÉN SZEGMENSEK SZÁMA Variábilis (V) Diverzitás (D)0027 Kapcsoló (J)546 Gene segmentsKönnyű láncNehéz lánc kappalambda Chromosome.
A TERMÉSZETES ÉS SZERZETT IMMUNITÁS SAJÁTSÁGAI Természetes immunitás mechanizmusai Szerzett immunitás Mechanizmusai Gyors válasz (órák) Lassú válasz (napok,
ANTIGÉN: Mindazon struktúrák (sejtek, molekulák), amiket az érett immunrendszer felismer, és vele fajlagos, specifikus módon reagál. Immunválaszt vagy.
T-SEJTEK FEJLŐDÉSE ÉS DIFFERENCIÁCIÓJA.
SZERZETT IMMUNITÁS FELISMERÉS. DC Epitél sejtek PERIFÉRIÁS LIMFOID SZERVEK PERIFÉRIÁS SZÖVETEK SEJTEK KÖZÖTTI SZÖVET SPECIFIKUS KOMMUNIKÁCIÓS HÁLÓZATOK.
C mIg H mIg L TCR  TCR  T-SEJT  C V Antigén receptor TCR A B- ÉS T-SEJTEK ANTIGÉN FELISMERŐ RECEPTORAI HASONLÓ SZERKEZETŰEK TCR =  +  A.
B SEJT DIFFERENCIÁCIÓ A CSONTVELŐBEN
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ
Az immunglobulinok szerkezete és funkciója
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
AZ ANTIGÉN FOGALMA ÉS SAJÁTSÁGAI
Az immunrendszer végrehajtó funkciói
A RECEPTOR KERESZTKÖTÉSE JELÁTVITELI MECHANIZMUSOKAT INDÍT BE
SZERZETT IMMUNITÁS FELISMERÉS.
23-mer 12-mer A közbeeső DNS hurok kivágódik A heptamerek és nonamerek visszafelé illeszkednek Az RSS által kialakított alakzat a rekombinázok célpontja.
Hogyan képes a B sejt csak egyfajta könnyű és egyfajta nehéz láncot kifejezni? –Annak ellenére, hogy minden B sejtben egy apai és egy anyai Ig lókusz is.
A genetika (örökléstan) tárgya
A SEJTCIKLUS ÉS A RÁK KAPCSOLATA
Antigén-felismerő receptorok (BCR, TCR)
A TERMÉSZETES ÉS SZERZETT IMMUNITÁS SAJÁTSÁGAI Természetes immunitás mechanizmusai Szerzett immunitás Mechanizmusai Gyors válasz (órák) Lassú válasz (napok,
A a Aktivált B-sejt érett naiv B-sejt Memória B-sejt B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ IZOTÍPUS VÁLTÁS Ag.
Immunbiológia - II. A T sejt receptor (TCR) heterodimer CITOSZÓL EXTRACELLULÁRIS TÉR SEJTMEMBRÁN kötőhely  lánc  lánc VV VV CC CC VV VV
Dr. Falus András egyetemi tanár Genetikai, Sejt- és Immunbiológiai Intézet Semmelweis Egyetem Általános Orvostudományi Kar B lymphocyták (ontogenezis,
A a Aktivált B-sejt érett naiv B-sejt Memória B-sejt B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ IZOTÍPUS VÁLTÁS Ag.
PLAZMA SEJT ANTIGÉN CITOKINEK B-SEJT A B – SEJT DIFFERENCIÁCIÓT A T-SEJTEK SEGÍTIK IZOTÍPUS VÁLTÁS ÉS AFFINITÁS ÉRÉS CSAK T-SEJT SEGÍTSÉGGEL MEGY VÉGBE.
KÖZPONTI (ELSŐDLEGES) LIMFOID SZERVEK Csontvelő Tímusz
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
ANTIGÉN-SPECIFIKUS T – SEJT AKTIVÁCIÓ RÉSZTVEVŐK Antigénből származó peptideket bemutató sejt A T limfocita készletből szelektált peptid-specifikus T sejt.
lecke A genetikai kódrendszer Gének és allélek.
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
34. lecke A fehérjék felépítése a sejtben. Lényege: Lényege:  20 féle aminosavból polipeptidlánc (fehérjelánc) képződik  A polipeptidlánc aminosav sorrendjét.
AZ ANTIGÉN-FELISMERŐ RECEPTOR VARIABILITÁSÁNAK GENETIKAI HÁTTERE.
Új molekuláris biológiai módszerek
Géntechnikák labor kiselőadás Készítette: Nagy Zsuzsanna
Új molekuláris biológiai módszerek
Antigén receptorok Keletkezésük, a sokféleség kialakulása
Előadás másolata:

AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE

AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz lánc (H) VL CL VH CH

Mieloma multiplex Plazmasejt tumorok – tumorsejtek a csontvelőben Monoklonális eredetű emberi immunoglobulinok a szérumban (50-100mg/ml) Rodney Porter és Gerald Edelman 1959 – 1960 fehérje tisztítás AZ IMMUNOGLOBULINOK JELLEGZETES AMINOSAV SZERKEZETE 50 kDa Nehéz lánc 25 kDa Könnyű lánc Gél elektroforézis V ariábilis C onstans Redukció L H

AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE VL VH A sokféleség kialakulásának mechanizmusa? Más szabályok a variábilis és konstans régiók kialakulására? Szimmetrikus molekula  két azonos VH és VL  mindkét kromoszóma ugyanazt a szekvenciát kódolja? S – S

Sok GÉN ( – ) V2V2V2V2C V3V3V3V3C V1V1V1V1C 1 GÉN magas szomatikus mutációs ráta a V régióban VC GénGénGénGén Protein 1 GÉN = 1 FEHÉRJE A MOLEKULÁRIS BIOLÓGIAI DOGMÁJA AZ IMMUNOGLOBULIN SZEKVENCIA JELLEGZETESSÉGE ELMÉLETEK

AZ IMMUNOGLOBULINOK MOLEKULÁRIS GENETIKÁJA Az egyetlen C régiót kódoló gén a csíravonalban el van választva a V régió génektől A V génekből többféle áll rendelkezésre Feltételezhető egy mechanizmus, amely a V és C géneket fúzionálja egy teljes immunoglobulin génné Dreyer & Bennett feltételezése (1965) Egy adott izotípusú ellenanyag valószínűleg: Hogyan magyarázható az ellenanyagok kettős funkciója? A feltételezés ellentétben állt az akkor elfogadott nézettel, amennyiben a DNS (genetikai állomány) egy adott egyed minden sejtjében azonos

A Dreyer - Bennett hipotézis igazolása V V V V V V V V V V V V V A B-sejtekben a V és C géneket valamilyen mechanizmus egy teljes immunoglobulin génné fúzionálja C V C A csíravonalban egyetlen C gén van (L-lánc), amely a sok V géntől távol helyezkedik Módszer a sok V gén létezésének és a V – C gén átrendeződés igazolására

Módszer Megközelítés: Specifikus cDNS próbák a különböző V régiók és a C régiók elkülönítéséhez DNS restrikciós enzimek a DNS fragmentáláshoz A csíravonalnak (pl. méhlepény) és az érett B-sejteknek (pl. plazmocitóma/mielóma) DNS C V V V V V V V V V Csíravonal DNS C V V V V V Átrendezett DNS

Méhlepény B-sejt 1.5. Kb B-sejt V C 6.0 Kb V C 4.0 Kb DNA-kivonás Restrikciós enzim hasítás Gél elektroforézis Southernblot VCKb6,0 1,5 V-próba 4,0 C V C-próba Susumi Tonegawa kísérlete 1975

Sok variábilis gén van, de csak egy konstans gén VCVVV CSÍRAVONAL A V és C gének csak a B-sejtekben kerülnek egymás mellé C V VV B-SEJT KÖVETKEZTETÉSFehérje GénGénGénGén GÉN SZEGMENSEK SZOMATIKUS ÁTRENDEZŐDÉSE EGY GÉNNÉ

Az Ig gének szekvenálása tovább bonyolította a képet A csíravonal VL gének szerkezete hasonló volt a V  és and V könnyű láncok esetében A csíravonal és az átrendezett DNS nem volt azonos Honnan származik a 13 extra aminosav? CLCL VLVL ~ 95as~ 100as L CLCL VLVL ~ 95as~ 100as JLJL Az aminosavak egy része a kis számú J (Joining) régiókból származik L CLCL VLVL ~ 208as L

AZ IMMUNOGLOBULIN GÉN SZEGMENSEK SZÁMA Variábilis (V) Diverzitás (D)0027 Kapcsoló (J)546 Gene segmentsKönnyű láncNehéz lánc kappalambda Chromosome 2 kappa light chain gene segments Chromosome 22 lambda light chain gene segments Chromosome 14 heavy chain gene segments AZ IMMUNOGLOBULIN POLIPEPTID LÁNCOKAT TÖBB GÉN SZEGMENS KÓDOLJA AZ IMMUNOGLOBULIN GÉN SZEGMENSEK ELRENDEZŐDÉSE