Bevezetés az alakmodellezésbe I. Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I.

Slides:



Advertisements
Hasonló előadás
Rendszertervezés CAD.
Advertisements

Verő Balázs Dunaújvárosi Főiskola AGY Kecskemét, 2008 június 4.
2008. Bertha Mária A CAD-CAM modellezés alapjai Bertha Mária I.1. A számítógépi modell fogalma. A modellek alkalmazásának előnyei és szükségessége.
Geometriai Transzformációk
Geometriai transzformációk
Geometriai modellezés
Geometriai modellezés
Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010 Geometriai modellezés 2. előadás.
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mérnöki Informatikus MSc 4. Előadás.
A virtuális technológia alapjai c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar, Alkalmazott Matematikai Intézet 2. Előadás Tömör testek modellje.
A virtuális technológia alapjai Dr. Horváth László Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Alkalmazott.
6. Előadás Alkatrészkapcsolatok modellezése
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
9. Előadás Gyártási folyamatok modellezése
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mechatronikai Mérnöki MSc 2. Kontextuális.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mechatronikai Mérnöki MSc 6. Modellezés.
Budapesti Műszaki Főiskola Gépészmérnöki Szak CAD/CAM szakirány Forgácsolási technológia számítógépes tervezése II. 6/1. előadás Adatcsere tervezőrendszerek.
Dr. Horváth László – PLM – CCM – 2. előadás: Határfelület-ábrázolás és Euler -i topológia A CAD/CAM modellezés alapjai Dr. Horváth László Budapesti.
A virtuális technológia alapjai Óbudai Egyetem Neumann János Informatikai Kar, Alkalmazott Matematikai Intézet 4. Előadás Alakmodell fejlesztése Alak építése.
Modellezés és tervezés c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Alkalmazott Informatikai Intézet Mérnöki Informatikus MSc.
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mérnöki Informatikus MSc 4. Előadás A.
A virtuális technológia alapjai
A virtuális technológia alapjai Dr. Horv á th L á szl ó Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Intelligens Mérnöki Rendszerek.
Óbudai Egyetem Neumann János Informatikai Kar
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 8.
A virtuális technológia alapjai Dr. Horváth László Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Alkalmazott.
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
A virtuális technológia alapjai Dr. Horv á th L á szl ó Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Intelligens Mérnöki Rendszerek.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 10.
Budapesti Műszaki Főiskola Bánki Donát Gépészmérnöki Főiskolai Kar Forgácsolási technológia számítógépes tervezése 2. Előadás 2,5 tengelyű marási ciklusok.
A modellező rendszerek közötti adatcsere és szabványai Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 8.
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mérnöki Informatikus MSc 9. Előadás és.
A virtuális technológia alapjai
Gyártási modellek Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 7. előadás.
A CAD/CAM modellezés alapjai
PTE PMMK Matematika Tanszék dr. Klincsik Mihály Matematika III. előadások MINB083, MILB083 Gépész és Villamosmérnök szak BSc képzés 2007/2008. őszi félév.
Matematika III. előadások MINB083, MILB083
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 11.
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 5. előadás Alkatrészek, szerelési.
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 6. előadás Véges elemeken.
Integrált termékmodellek Budapesti Műszaki Főiskola CAD/CAM szakirány A CAD/CAM modellezés alapjai Előadás Integrált termékmodellek Dr. Horváth László.
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 1. előadás Bevezető a számítógépen.
Budapesti Műszaki Főiskola CAD/CAM szakirány A CAD/CAM modellezés alapjai 2001/2000 tanév, II. félév 1. Előadás A számítógépes modellezés fogalma, szerepe.
Budapesti Műszaki Főiskola Bánki Donát Gépészmérnöki Főiskolai Kar Forgácsolási technológia számítógépes tervezése 5. Előadás Fúrási és esztergálási.
Bevezetés az alakmodellezésbe II. Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I.
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 9. előadás Műszaki tervezőrendszerek.
1 A geometriai modell és struktúrája Budapesti Műszaki Főiskola A CAD/CAM modellezés alapjai 2000/2001 tanév, II. félév 2. előadás A geometriai modell.
Összefüggések modelleken belül Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév.
Számjegyvezérlésű forgácsoló megmunkálás tervezése CAD/CAM rendszerekben Dr. Horváth László.
Budapesti Műszaki Főiskola Bánki Donát Gépészmérnöki Főiskolai Kar Forgácsolási technológia számítógépes tervezése 3. Előadás Felületek megmunkálásának.
Matematika I. 1. heti előadás Műszaki Térinformatika 2013/2014. tanév szakirányú továbbképzés tavaszi félév Deák Ottó mestertanár.
Matematika oktatás mérnök és informatikai képzésekben
Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010 Geometriai modellezés 2. előadás.
Számítógépes tervezőrendszerek c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mechatronikai Mérnöki MSc 4. Laboratóriumi.
Intelligens Mérnöki Rendszerek Laboratórium Alkalmazott Matematikai Intézet, Neumann János Informatikai Kar, Óbudai Egyetem Mielőtt a virtuális térbe lépnénk.
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mérnöki Informatikus MSc 8. Előadás A.
Hálózatok: új nyelv a tudományban Lovász László Eötvös Loránd Tudományegyetem
Testmodellezés Készítette: Esztergályos Gusztáv. Témák  Felületek megadásának matematikai alapja  Poligonokkal határolt felületek  explicit reprezentáció.
Szimuláció. Mi a szimuláció? A szimuláció a legáltalánosabb értelemben a megismerés egyik fajtája A megismerés a tudás megszerzése vagy annak folyamata.
Krossz-diszciplináris termékdefiníció
Budapesti Műszaki Főiskola CAD/CAM szakirány A CAD/CAM modellezés alapjai Előadás Integrált termékmodellek Dr. Horváth László.
Modellezés funkcionális alaksajátosságokkal
Alaksajátosságokkal való módosításon alapuló alakmodellezés
Elemzések a véges elemek elvén
Bevezetés Tematika Számonkérés Irodalom
Alak definiálása sajátosságokkal
Nagy Attila1,2, Rovó László1, Kiss József Géza1
Előadás másolata:

Bevezetés az alakmodellezésbe I. Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 2. előadás Bevezetés az alakmodellezésbe I. Dr. Horváth László

Tartalom Mi az alakmodell? Miért szükséges az alakmodell? Milyen információkat foglal magában az alakmodell? Melyek az alakmodellt alkotó entitások? Miként történik a görbék és felületek matematikai leírása?

Az alakmodell Az alak leírása a számítógépben a leírást feldolgozni képes eljárások számára. Az alak matematikai leírása a számítógépben geometriai modellként jön létre. A számítógépes geometriai modellezés felhasználja a geometria több ezer éves tudományának tételeit, módszereit és szabályait. A geometriai modell típusától és a tervező elhatározásától függően az alak több-kevesebb geometriai tulajdonságát írja le.

Miért szükséges az alakmodell? Általában azért, amiért a számítógépi modellek. A számítógépes tervezési eljárások kihasználása. Geometria: Építsümk össze bonyolult alakelmeket, miközben a komplex alakot a számítógép több hetes emberi munka helyett egy pillanat alatt számítja. Csak számítógépi modellekben, matematika függvényekkel leírható alak. Elemzés (FEM/FEA) NC megmunkálás Rövid átfutású, termelékeny, áttekinthetõ, a korábbi eredmények gyors beépítését lehetõvé tevõ, gyors módosítást biztosító csoportmunka

Milyen információkat foglal magában az alakmodell? Határolófelületek. Élek, kontúrok. Miként alkotják ezek az alakot? Hol az anyag?

Felületek a modellben

Melyek az alakmodellt alkotó entitások? Topológia Geometria Ábrázolás szerint Többábrázolású Egységes

Topológiai leírás A modellezett alakon mely élek mely csúcsokba futnak be? M ely élek veszik körül az egyes felületeket? Mely élek mentén kapcsolódnak a felületek?

Topológiai entitások

Topológiailag azonos alakok

Összetett topológiai entitások

Görbe paraméteres leírása

Görbe paraméteres egyenlete Az u betűvel jelölt paraméter értékéhez adja meg a pont modelltérbeli x, y és z koordinátáit. A görbe paraméteres egyenletének általános alakja: P(u)=[x(u) y(u) z(u)] ahol u min <= u <= u max A P pont modelltérbeli x, y és z koordinátái az u paraméter függvényében: x=x(u), y=y(u) és z=z(u)

Felület paraméteres leírása

Felület paraméteres egyenlete A felület paraméteres egyenletének általános alakja: P(u,v)=[x(u,v) y(u,v) z(u,v)] ahol u min <= u <= u max és v min <= v <= v max A P pont modelltérbeli x, y és z koordináták az u és v paraméterek függvényében: x=x(u,v), y=y(u,v) és z=z(u,v)

Paraméteregyenes és paramétertér