10. LÉZEREK, LÉZERSPEKTROSZKÓPIA. Lézer: erős, párhuzamos fénysugarat adó fényforrás. Light Amplification by Stimulated Emission of Radiation L ASER.

Slides:



Advertisements
Hasonló előadás
Az optikai sugárzás Fogalom meghatározások
Advertisements

Fémkomplexek lumineszcenciája
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
7. A MOLEKULÁK REZGŐ MOZGÁSA
Az elektron szabad úthossza
7. A MOLEKULÁK ELEKTRONSZERKEZETE
A reakciókinetika időbeli felbontásának fejlődése.
3. A HIDROGÉNATOM SZERKEZETE
9. Fotoelektron-spektroszkópia
5. OPTIKAI SPEKTROSZKÓPIA. 5.1 A Born-Oppenheimer közelítés.
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA. Lézer: erős, párhuzamos fénysugarat adó fényforrás. Light Amplification by Stimulated Emission of Radiation L ASER.
Kísérleti módszerek a reakciókinetikában
Szilárd anyagok elektronszerkezete
Spektroszkópiáról általában és a statisztikus termodinamika alapjai
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Sugárzás-anyag kölcsönhatások
Elektromágneses színkép
Hagyományos reakciókinetikai mérés:
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
Szimmetriaelemek és szimmetriaműveletek (ismétlés)
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
11. AZ ATOMMAG ELEKTRONÁLLAPOTAI
5. OPTIKAI SPEKTROSZKÓPIA
6. A MOLEKULÁK REZGŐ MOZGÁSA A két tömegpontból álló harmónikus oszcillátor.
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
3. A HIDROGÉNATOM SZERKEZETE A hidrogénatom Schrödinger-egyenlete.
3. Ionkristály lézerek A lézerközeg: fémoxid v. fémhalogenid, amelyben a fémionok kis részét másik fémion („szennyező”) helyettesíti Egykristály: kis spektrális.
Lézerspektroszkópia Előadók: Kubinyi Miklós Grofcsik András
1 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
A héliumatom állapotainak levezetése a vektormodell alapján (kiegészítés) 1.
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
Kómár Péter, Szécsényi István
3. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy
A H-atom kvantummechanikai tárgyalása Tanulságok
6. A MOLEKULÁK FORGÓMOZGÁSA
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
5. GÁZLÉZEREK Lézeranyag: kis nyomású (0, Torr) gáz, vagy gázelegy Lézerátmenet: elektronszintek között (UV és látható lézerek) rezgési szintek.
Kubinyi Miklós ) Lézerspektroszkópia Kubinyi Miklós )
Lézerek alapfelépítése
Raman spektroszkópia hn0 hn0 hn0 hn0 hn0 hn0 hnS hnAS
Elektrongerjesztési (UV-látható) spektroszkópia
NIR-VIS spektrométerek. NIR-VIS spektrumok „NIR spectra ( cm -1 ) of polymers, monomers, plasticizers, lubricants, antidegradantes (antioxidantes,
Az atom szerkezete Készítette: Balázs Zoltán BMF. KVK. MTI.
6. A MOLEKULÁK REZGŐ MOZGÁSA
Az anyagszerkezet alapjai
7. A MOLEKULÁK ELEKTRONSZERKEZETE 7.1 A variációs elv.
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
Fémkomplexek lumineszcenciája
A fény és az anyag kölcsönhatása
Budapesti Műszaki és Gazdaságtudományi Egyetem
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
A FONTOSABB MÓDSZEREK:
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
Nagyfeloldású Mikroszkópia Dr. Szabó István 12. Raman spektroszkópia TÁMOP C-12/1/KONV projekt „Ágazati felkészítés a hazai ELI projekttel.
Molekula-spektroszkópiai módszerek
12. MÁGNESES MAGREZONANCIA
A reakciókinetika időbeli felbontásának fejlődése
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
Analitikai Kémiai Rendszer
Fizikai kémia 2 – Reakciókinetika
Fizikai kémia 2 – Reakciókinetika
A H-atom kvantummechanikai tárgyalása Tanulságok
Kísérletek „mezoszkópikus” rendszerekkel!
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA
5. OPTIKAI SPEKTROSZKÓPIA
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
Optikai mérések műszeres analitikusok számára
A lézerek működése Segédanyag a „Barangolás Tudásvárosban” élménytábor „Izgalmas modern fizikai kísérletek” előadásához Dr. Majár János.
Előadás másolata:

10. LÉZEREK, LÉZERSPEKTROSZKÓPIA

Lézer: erős, párhuzamos fénysugarat adó fényforrás. Light Amplification by Stimulated Emission of Radiation L ASER

Az első lézer: rubin lézer Theodore Maiman (1960)

Lézerek felhasználása: optika orvosi technika haditechnika informatika anyagmegmunkálás alkalmazások a kémiában: –spektroszkópia –fotokémia

10.1 A lézerek működési elvei Stimulált emisszió inverz populáció optikai rezonátor

Stimulált emisszió (áttekintés)

Abszorpció Sebességi egyenlet: N 1 : kisebb energiájú mol. koncentrációja : a fotonok koncentrációja A 12 : az abszorpció sebességi állandója

Spontán emisszió Sebességi egyenlet: B 21 : a spontán emisszió sebességi állandója

Stimulált emisszió Sebességi egyenlet: A 21 : a stimulált emisszió sebességi állandója A keletkező foton frekvenciája, iránya, polarizációja és fázisa megegyezik a stimulálóéval.

Einstein-relációk A három sebességi állandó közötti összefüggés:

Lézerekben a fényt stimulált emisszióval erősítik, a lézer anyagában stimulált emisszióval több foton keletkezik, mint amennyi abszorbeálódik: Stimulált emisszió: Abszorpció: Mivel A 21 =A 12 a lézer működésének feltétele, N 2 >N 1 (Spontán emissziót elhanyagoltuk.)

Inverz populáció Termikus egyensúlyban Boltzman-eloszlás: N 1 /N 2 =exp((E 2 -E 1 )/kT) Ha T nő, N 1 közelít N 2 -höz. De N 1 <N 2 mindig fennmarad. Lézerekben N 2 >N 1. Ezt az állapotot nevezzük inverz populációnak. Nincs termikus egyensúly! Létrehozása speciális, három vagy négy E-szintes rendszerekkel lehetséges.

Lézerek pumpálása Stimulált emisszióhoz szükséges energia közlése a lézer anyaggal. A pumpáláshoz használható: - fényenergia (villanó lámpa, másik lézer fénye) - elektromos energia (gázkisülés) - kémiai energia (kémiai reakció)

Optikai rezonátor A lézer közeget két tükör közé helyezik. A fénysugár ide-oda verődik, így a fotonok átlagos úthossza megnő, s vele együtt a stimulált emisszió valószínűsége.

Az erősítő interferencia feltétele Állóhullám kialakulása: hullámhossz, m nagy egész szám. A frekvencia:

Lézersugár spektruma

Lézerek típusai (a lézerközeg alapján) szennyezettionkristály-lézer félvezetőlézer gázlézer festéklézer

10.2 Szennyezettionkristály- lézerek Lézer közeg: ionos szigetelő, amely kis koncentrációban szennyező fémiont tartalmaz. A lézer sugárzást a szennyező fémionok emissziója adja. Pumpálás: optikailag (fehér fényű lámpa vagy félvezetőlézer) Rubinlézer Nd-YAG-lézer Titán-zafír-lézer

Neodímium-YAG lézer Gazdarács: Y 3 Al 5 O 12 ittrium-alumínium gránit = yttrium aluminium granet = YAG Szennyező ion: Nd 3+ (az Y 3+ ionok ~1%-a helyett)

A Nd a 60. elem. A Nd-atom konfigurációja: KLM4s 2 4p 6 4d 10 4f 4 5s 2 5p 6 6s 2 A Nd 3+ -ion konfigurációja: KLM4s 2 4p 6 4d 10 4f 3 5s 2 5p 6

Nd-YAG lézer energiaszint-diagramja

10.4 Gázlézerek Lézer közeg: tiszta gáz (például N 2 -lézer) gázelegy (például CO 2 -lézer) Pumpálás: elektromos energiával (gázkisülés) Hélium-neon lézer (látható fény) Argonlézer (látható fény) N 2 -lézer (UV-fény) CO 2 -lézer (IR-fény)

Argonlézer Lézer közeg: ~0,5 torr nyomású Ar-gáz, kisülési csőbe töltve Kisülésben- gerjesztett molekulák - alapállapotú ionok jönnek létre (plazma) - különböző gerj. áll. ionok A kisülési cső működési jellemzői: áramerősség, feszültség, nyomás, hőmérséklet - ezektől függ az Ar-ionok popuációja különböző energiaszinteken. Inverz populáció érhető el az Ar-ion egyes gerjesztett állapotaiban, náluk kisebb energiájú gerjesztett állapotokhoz képest. }

Az Ar a 18. elem. A Ar-atom konfigurációja: 1s 2 2s 2 2p 6 3s 2 3p 6 A Ar + -ion legkisebb energiájú konfigurációja: 1s 2 2s 2 2p 6 3s 2 3p 5

Argonlézer energiaszint- diagramja

Argon-lézer felépítése

CO 2 -lézer Lézer közeg: ~ 1:1 arányú CO 2 -N 2 elegy zárt változat: - ~10 torr nyomású zárt kisülési csőben nyitott változat - ~ atmoszférikus nyomású nyílt kisülési csőben A lézer átmenet a CO 2 -molekula gerjesztett rezgési állapotai között történik, ezért infravörös fényt ad. A N 2 segédanyag.

A CO 2 -molekula normál rezgései szimmetrikus nyújtásdeformációaszimmetrikus nyújtás v 1 v 2 v 3 A három normálrezgés gerjesztettségét jellemző kvantumszámok.

CO 2 -lézer energiaszintjei

Előny: az elektromos energiát nagy hatásfokkal infravörös fénnyé alakítja Felhasználás: fémmegmunkálás sebészet spektroszkópiában plazmák előállítása

10.6 Festéklézer Lézerközeg: erősen fluoreszkáló festék oldata. Pumpálás: optikailag (fehér fényű lámpa vagy másik lézer). A lézer sugárzás a festékmolekula S 1 elektronállapotának rezgési alapállapota és S 0 állapotának gerjesztett rezgési állapota között történik.

A festéklézer előnyei - hangolható

Festéklézer működési tartománya különböző festékekkel

10.7 A lézersugár tulajdonságai Sok tekintetben messze felülmúlja a hagyományos fényforrásokkal előállított fénysugarat.

Teljesítménysűrűség Kis keresztmetszetben nagy energiát összpontosít. Keresztmetszete tipikusan 1 mm 2. Teljesítmény mW-tól kW-ig tartományig terjed.

Egyenes vonalban terjed Gázlézerek keresztmetszete 100 m-es távolságban sem változik sokat. (A hosszú rezonátor miatt)

Spektrális sávszélesség A gázlézereké különösen kicsi, pl. az Ar-lézer 514,5 nm-es fényének sávszélessége nm.

Rövid impulzusok Impulzus üzemben működő lézerek tipikusan  s-os (rubinlézer, Nd-YAG-lézer) vagy ns-os (N 2 -lézer) tartományba eső impulzusokat adnak. Pikoszekundumos, femtoszekundumos fényimpulzusok előállítása „móduscsatolt” lézerekkel.

Lézersugár frekvenciájának változtatása festéklézer nem lineáris kristályok - felharmonikusok előállítása (2, 3, 4 ) - frekvencia felbontása ( = )

10.8 Raman-szórás

Foton és molekula köcsönhatásai abszorpció emisszió stimulált emisszió rugalmas szórás rugalmatlan szórás ionizáció … stb.

Rayleigh-szórás Foton rugalmas szóródása molekulán. Mindkettő haladási iránya változik, energiájuk nem változik. Felhasználás: részecskeméret meghatározás kolloid rendszerekben.

Raman-szórás Foton rugalmatlan szóródása a molekulán. Mindkettő haladási iránya változik - foton energiát ad át a molekulának, vagy - a molekula energiát ad át a fotonnak. A molekula forgási, rezgési és elektrongerjesztési energiája egyaránt változhat.

Sir CHANDRASEKHARA VENKATA RAMAN ( )

A molekula energiaváltozása Raman-szórásban

Raman spektrométer felépítése

Kiválasztási szabályok Mások, mint az abszorpciós illetve emissziós spektrumra vonatkozóak. Raman-szórás esetében  az indukált dipólus-momentum (nem a permanens!). : polarizálhatósági tenzor : elektromos térerősség

Polarizálhatósági tenzor  szimmetrikus tenzor, tehát  xy =  yx,  xz =  zx és  yz =  zy

Forgási Raman-színkép Kiválasztási szabály: A permanens  -vel rendelkező molekulák forgási átmenetei megengedettek.

Rezgési Raman-színképek a.) egy foton elnyelésével csak 1 normálrezgés gerjeszthető b) A átmeneti momentum elemzésével kimutatható, hogy azok a normál rezgések gerjeszthetők, amelyek ugyanabban a szimmetria speciesbe esnek, mint az  tenzor egyik eleme. Kiválasztási szabályok:

A C 2v csoport karaktertáblázata

Az infravörös és a Raman- spektrum kiegészítik egymást Az infravörösben nem észlelhető normál rezgések megjelenhetnek Ramanban és fordítva.

Krotonaldehid rezgési színképe IR-színkép Raman-színkép S-transz-krotonaldehid

A normál rezgések besorolása

A Raman-spektroszkópia előnyei Vizes oldatok vizsgálhatók (A víz az IR-spektrum nagy részében erősen elnyel, viszont Raman-szórása gyenge.) Roncsolás mentes vizsgálat (Szilárd mintát nem kell őrölni és KBr-be préselni vagy feloldani, csak a lézersugár útjába helyezzük.) Rezonancia Raman-effektus (Egyes rezgési Raman-sávok annyira felerősödnek, ha a vegyület a lézerfényt elnyeli. Kis koncentrációban levő színes komponensek kimutathatók pl. biológiai mintákban.) Raman-mikroszkóp

10.9 Két-foton abszorpció Forgási, rezgési vagy elektronátmenet, amikor a molekula egyidejűleg két fotont nyel el. Csak akkor elegendő a valószínűsége, ha nagy a fotonok koncentrációja. Az impulzuslézerekkel tanulmányozható, hagyományos fényforrásokkal, folytonos lézerekkel nem. Legtöbbet az elektrongerjesztéshez vezető két-foton abszorpciót tanulmányozzák.

A molekula energiaváltozása két- foton abszorpcióban

A két-foton abszorpció detektálási módszerei

Kiválasztási szabályok Mások, mint az egy-foton abszorpciós spektrumban. Raman-szórásra vonatkozó szabályokhoz hasonlítanak. A végállapot hullámfüggvénye olyan szimmetriaspeciesbe tartozik, mint  egyik eleme. Magyarázat: Raman-szórás Két-foton abszorpció Egy-foton abszorpció Spontán-emisszió Két-foton folyamat Egy-foton folyamat } }

Felhasználások 1. Olyan átmeneteket vizsgálunk, amelyek az egy-foton abszorpcióban tiltottak (az eltérő kiválasztási szabályok miatt) 2. Az elektrongerjesztési színképben a 200 nm alatti tartományban levő átmenetek megfigyelhetők, például a 150 nm- es egy-foton abszorpció helyett 300 nm-es két-foton abszorpciót mérünk. 3. Két-foton abszorpciós fluoreszcencia mikroszkóp. 4. Nagyfelbontású spektroszkópia: Doppler-effektus miatti sáv kiszélesedés kiküszöbölése. Doppler effektus hatása a spektrumra:

Doppler-kiszélesedés megszűntetése

Az 1,4-difluorbenzol két-foton spektruma

10.10 Gerjesztett elektronállapotok élettartamának mérése

Impulzus lézerek villanásának időtartama: s.  s ns ps fs Ultragyors folyamatok: fotofizika fotokémia fotobiológia } Időskálán lejátszódó folyamatok vizsgálatát teszik lehetővé

Fotofizika: molekulák gerjesztése és az azt követő sugárzásos és sugárzásmentes energiaváltozásai Gerjesztett molekulák koncentrációjának csökkenése (dezaktiváció): Differenciálegyenlet: Magyarázat: : a gerjesztett állapotú molekulák koncentrációja : a gerjesztett állapotú molekulák koncentrációja a lézer villanás után közvetlenül k : a dezaktiváció sebességi állandója

Dezaktiváció sebességének jellemzése k : sebességi állandó  = 1/k : lecsengési idő (gerjesztett állapot élettartama)  idő alatt

T 1 állapotok lecsengése:  s-os rendszerek S 1 állapotok lecsengése: ns-os, ps-os, fs-os rendszerek

Kísérleti berendezések típusai Mért jel:- tranziens abszorpció - tranziens emisszió  s-os és ns-os folyamatokhoz: egyszerű impulzuslézerek, elektronikus jelfeldolgozó készülékek ps-os és fs-os folyamatokhoz: „móduscsatolt lézerek” Pumpa-próba kísérletek

Pumpa-próba kísérlet

Kísérleti lehetőségek Lecsengési görbe mérése: a hullámhossz állandó, a tranziens abszorpciót az idő függvényében mérjük. Időfelbontásos spektroszkópia: késleltetési időt rögzítjük, hullámhossz függvényében mérjük a tranziens abszorpciót

Níluskék tranziens abszorpciójának lecsengése

Tranziens abszorpciós jel értelmezése - S o ->S 1 átmenet: próbasugár erősödése az S o állapot kiürülési miatt - S 1 ->S 2 átmenet: próbasugár gyengülése az S 1 állapot feltöltődése miatt - S 1 -> S o átmenet: próbasugár erősödése stimulált emisszió miatt

Femtoszekundumos lézerspektroszkópia Ahmed Zewail és munkatársai California Institute of Technology

11. AZ ATOMMAG ELEKTRONÁLLAPOTAI

Maghéj modell

Nukleonok spinből származó impulzusmomentuma (A proton és a neutron 1/2 spinű részecske, mint az elektron.)

Maghéj modell Az atommag kvantumállapotainak leírására használt modell Hasonlít a többelektronos atomok szerkezetének tárgyalásánál használt modellre, amelyekből az elektronhéjak adódnak. (Bonyolultabb annál, mivel nukleonból kétféle van.)

Atommagok kvantumállapotának jellemzése (A maghéj modell szerinti tárgyalás eredménye) A magok állapotát két kvantumszám jellemzi: - I : magspin-kvantumszám - M I : mag mágneses kvantumszám

I: magspin-kvantumszám attól függ, hogy a mag rendszáma és tömegszáma páros vagy páratlan. M I : mag mágneses kvantumszám : M I = I, I-1, …, -I. rendszámtömegszámI lehetséges értékei párospároscsak 0 lehet párospáratlan“félegész” számok (1/2, 3/2, 5/2…) páratlanpárosegész számok (1,2,3…) páratlanpáratlan“félegész” számok (1/2, 3/2, 5/2…) A magkvantumszámok lehetséges értékei

Az atommag energiája Mágneses tér távollétében: csak I-től függ, M I szerint degenerált Mágneses térben: a degenerált szintek M I szerint felhasadnak.

Atommagok gerjesztése Mössbauer effektus: I változik, gerjesztés gamma-fotonnal Mágneses magrezonancia: M I változik (mágneses térben!), gerjesztés rádióhullámú fotonnal