Határidős és opciós ügyletek segédanyag. 2007. tavaszHatáridős és opciós ügyletek2 IV. Opciók értéke lejárat előtt A lejárat pillanatai tehát igen egyszerűek,

Slides:



Advertisements
Hasonló előadás
Dr. Pintér Éva PTE KTK GTI
Advertisements

12. A díjtartalék számítása
Az opció fogalma Put-call paritás Opciós befektetési stratégiák
Határidős és opciós ügyletek
Gazdasági informatika 2001/2002. tanév II. félév Gazdálkodási szak Nappali tagozat.
Határidős kereskedés a Budapesti Értéktőzsdén
Vállalati pénzügyek alapjai
MI 2003/ A következőkben más megközelítés: nem közvetlenül az eloszlásokból indulunk ki, hanem a diszkriminancia függvényeket keressük. Legegyszerűbb:
Műveletek logaritmussal
A tételek eljuttatása az iskolákba
A kamatlábak lejárati szerkezete és a hozamgörbe
A diákat jészítette: Matthew Will
A diákat készítette: Matthew Will
Hitelfelvételi problémák
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Árfolyamkockázat és a vállalati szféra
Opciós piacok. Meghatározás Egy termék jövőbeli vételére vagy eladására szóló jog, előre rögzített áron és időbenEgy termék jövőbeli vételére vagy eladására.
Részvényopciós díjak jellemzői
NOVÁK TAMÁS Nemzetközi Gazdaságtan
Határidős kereskedés a Budapesti Értéktőzsdén
szakmérnök hallgatók számára
2. A KVANTUMMECHANIKA AXIÓMÁI 1. Erwin Schrödinger: Quantisierung als Eigenwertproblem (1926) 2.
A partneri kapcsolatok értékelése hálózati együttműködés esetén
A diákat készítette: Matthew Will
A diákat készítette: Matthew Will
Az opciók értékelése Richard A. Brealey Stewart C. Myers MODERN VÁLLALATI PÉNZÜGYEK Panem, 2005 A diákat készítette: Matthew Will 21. fejezet McGraw Hill/Irwin.
A diákat készítette: Matthew Will
Fazakas Gergely Részvények árazása
Befektetési döntések Bevezetés
IV. Terjeszkedés.
Összefoglaló gyakorlati feladatok
Mikroökonómia gyakorlat
A termelés költségei.
Az annuitás Gazdasági és munkaszervezési ismeretek, 2. előadás
Származtatott termékek és reálopciók Dr. Bóta Gábor Pénzügyek Tanszék.
Vállalati pénzügyek alapjai
2013. őszBefektetések I.1 Származtatott termékek Határidős ügyletek Csere (swap) ügyletek Opciók.
2013. tavaszSzármaztatott termékek és reálopciók1 Részvényportfóliók fedezése Hatékony portfóliók –β paraméter megmutatja mennyire érzékenyen reagálnak.
2015. tavaszSzármaztatott termékek és reálopciók1 III. Fedezeti ügyletek Határidős ügylet segítségével rögzíthető a jövőbeli ár –árfolyamkockázat kiküszöbölése.
Származtatott termékek és reálopciók Dr. Bóta Gábor Pénzügyek Tanszék.
Származtatott termékek és reálopciók BMEGT35ML tavasz Vizsgakövetelmények A vizsga az alábbiakban felsorolt tételekből összeállított kérdésekből,
Tőzsdei spekuláció Dr. Bóta Gábor Pénzügyek Tanszék.
Tőzsdei spekuláció Dr. Bóta Gábor Pénzügyek Tanszék.
2013. tavaszSzármaztatott termékek és reálopciók1 II.2. Határidős árfolyamok A lejáratkor a határidős és az azonnali ár megegyezik. Milyen kapcsolat van.
2013. tavaszSzármaztatott termékek és reálopciók1 IV. Opciók értéke lejárat előtt A lejáratkori opcióértékek egyszerűen megadhatók, de a fő kérdés a lejárat.
Opciós ügyletek. Az egyszerű spekulációs ügyletek kockázata igen nagy, ezért nem mindenki vállalja. A fedezeti ügyletkötők számára sem előnyös a határidős.
2013. tavaszTőzsdei spekuláció1 Határidős árfolyamok.
Származtatott termékek és reálopciók tavasz 2. Zh tájékoztató A zárthelyi időpontja és helyszíne: április 22. hétfő QA407, az alábbi beosztás.
2013. tavaszSzármaztatott termékek és reálopciók1 II. Határidős árfolyamok A lejáratkor a határidős és az azonnali ár megegyezik. Milyen kapcsolat van.
BME Üzleti gazdaságtan konzultáció - szigorlat Andor György.
Származtatott termékek
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
Befektetés és finanszírozás Határidős és opciós ügyletek
II. Határidős árfolyamok
V. Befektetői stratégiák opciós ügyletekkel
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
V. Befektetői stratégiák opciós ügyletekkel
V. Befektetői stratégiák opciós ügyletekkel
Haladó Pénzügyek Vezetés szervezés MSC I. évfolyam I
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
Hol tartunk… IV. Hozamok és árfolyamok
Származtatott termékek és reálopciók
Származtatott termékek és reálopciók
Hol tartunk… IV. Hozamok és árfolyamok
Haladó Pénzügyek Vezetés szervezés MSC I. évfolyam I
Előadás másolata:

Határidős és opciós ügyletek segédanyag

2007. tavaszHatáridős és opciós ügyletek2 IV. Opciók értéke lejárat előtt A lejárat pillanatai tehát igen egyszerűek, de a fő kérdés a lejárat előtti érték, árfolyam. Ez csak bonyolult összefüggésekkel adható meg, így a témát leegyszerűsítve tárgyaljuk. Miért bonyolult? –„Szokásos” eljárásunk, a várható pénzáramlás becslése, majd az opció kockázatához illeszkedő tőke alternatíva költséggel történő diszkontálás nem vezet megoldásra. –Az opció kockázata folyamatosan változik. Érték = Árfolyam –Hatékony árazódást tételezünk fel. –c és p érték is, (egyensúlyi) árfolyam is. 22

2007. tavaszHatáridős és opciós ügyletek3 IV.1. Egyszerűsített megközelítés – a binomiális modell Mivel egy opció értéke közvetlenül nem megragadható, így olyan részek kombinációjával próbáljuk közelíteni, amelyek értéke ismert, vagy könnyen megadható. A binomiális modellben lényegében az alaptermék árfolyam-alakulásának tulajdonságait egyszerűsítjük azért, hogy a lejáratkori árfolyam végtelen lehetséges értéke helyett csak néhánnyal kelljen kalkulálnunk. –A részvény-árfolyamok alapvető tulajdonságait kell egyszerűbb formára hoznunk várható hozam + bolyongás 22

2007. tavaszHatáridős és opciós ügyletek4 A binomiális modell egyszerűsítése: t P P0P0 t P P0P0 folytonos modell diszkrét binomiális modell 22

2007. tavaszHatáridős és opciós ügyletek5 Mindezek után olyan portfóliót állítunk össze, amelynek ugyan része az opció is, de mind a portfólió egésze, mind a többi része egzaktul megadható. Végül a portfólió és az „egzakt rész” különbségeként adódik az opció értéke. –Olyan portfóliót állítunk össze, amelynek T időpontbeli értéke biztosan ismert. –Ezt úgy csináljuk, hogy a portfólióban lévő részvény értékének változását „lefedezzük” az opció értékének változásával. –Ismerjük tehát a portfólió jövőbeli értékét, amiből megadhatjuk a jelenbeli értékét. –Mivel ismerjük P 0 -t, az egyetlen ismeretlen az opció jelenlegi (c vagy p) értéke lesz. 23

2007. tavaszHatáridős és opciós ügyletek6 Tekintsünk egy egyszerű példát! –jelenlegi részvényárfolyam (P) legyen 10$ –vételi opció kötési árfolyam K=11$ lejárat T=1év, európai típusú –a részvényárfolyam 1 év alatt 12,5$-ra növekedhet, vagy 8$-ra csökkenhet 10$ 12,5$ 8$8$ részvény: 10$ opció: c részvény: 12,5$ opció: 1,5 $ részvény: 8$ opció: 0 23

2007. tavaszHatáridős és opciós ügyletek7 Állítsunk össze a lejáratkori részvényárfolyamtól független értékű portfóliót! –Célunkat x db részvény megvásárlásával és 1 db (ezen részvényre vonatkozó) vételi opció kiírásával (eladási kötelezettség vállalásával) próbáljuk elérni. –1/3 részvényből és 1 vételi opció kiírásából álló portfóliónk értéke 1 év múlva: 23

2007. tavaszHatáridős és opciós ügyletek8 –Tudjuk tehát, hogy a portfólió jövőbeli értékét. 2,67$ –Egy ilyen portfólió összeállításának költsége – a portfólió jelenbeli értéke: –Mindezek alapján c-t meghatározható. 24

2007. tavaszHatáridős és opciós ügyletek9 Binomiális értékelés több periódus esetén –Hasonló eljárás, mint egy periódus esetén. 10 $ 8 $ 12,5 $ 15,625 $ 10 $ 6,4 $ 4,625 $ 0 $ c1c1 2,29 $ c 24-25

2007. tavaszHatáridős és opciós ügyletek10 A megoldás pontosításához a részidőszakok számának növelése vezet, ez azonban megnehezíti a számítást. A binomiális modell segítségével az alaptermék árfolyamváltozásának folyamata könnyen megragadható, a paraméterek változtatásával bonyolultabb folyamatok is könnyen kezelhetők (az értékelési eljárás alapelve ekkor is hasonló). 26

2007. tavaszHatáridős és opciós ügyletek11 Binomiális értékelés – eladási opciók –példa: P 0 =50$, T=2év, K T =52$, r f =5% 50 $ 40 $ 60 $ 72 $ 48 $ 32 $ 0 $ 4 $ 20 $ Kockázatmentes portfólió: x db részvény és 1 db eladási opció megvásárlása 1,42 $ 9,52 $ 4,24 $ 25

2007. tavaszHatáridős és opciós ügyletek12 Binomiális értékelés – amerikai opciók 50 $ 40 $ 60 $ 72 $ 48 $ 32 $ 0 $ 4 $ 20 $ 1,42 $ 9,52 $ 12 $ 5,13 $ 1,42 $ 25

2007. tavaszHatáridős és opciós ügyletek13 IV.2. Általános megközelítés – a Black-Scholes modell A binomiális modellnél a diszkrét árfolyamváltozások bevezetése adta a megoldást. A folyamatos változat megoldását adja az ún. Black-Scholes-formula (képlet). A megoldáshoz vezető út szinte azonos: –kockázatmentes portfólió – részvény - opció A folyamatos forma miatt a levezetés magasabb fokú matematikai eszköztárat igényel. Ezért a téma tárgyalását leegyszerűsítjük, a levezetéstől eltekintünk. 26

2007. tavaszHatáridős és opciós ügyletek14 A Black-Scholes formula sztorija –„Az elmúlt három évtized egyik legfontosabb áttörése volt a pénzügyekben.” 1960-as évek végén egy különös háromtagú társaság –Fischer Black –Myron Scholes –Robert C. Merton Fischer Black Robert Merton Myron Scholes

2007. tavaszHatáridős és opciós ügyletek15 Az alap-formula a lejáratig osztalékot nem fizető részvényre vonatkozó európai vételi opció értékét (c-t) adja meg, a többi opciós pozíció értékére ebből következtetünk majd. A Black-Scholes formula szerinti c-függvény jellege: KTKT c P0P0 c P 0 -K T 27

2007. tavaszHatáridős és opciós ügyletek16 A Black-Scholes formula szerinti c-függvény képlete: P 0 a részvény jelenlegi árfolyama K 0 az opció K T kötési árfolyamának jelenértéke r f kockázatmentes kamatlábbal diszkontálva N(d) a normális eloszlású valószínűségi változó eloszlásfüggvény-értéke d-nél 27

2007. tavaszHatáridős és opciós ügyletek17 A Black-Scholes formula szerinti c-függvény képlete:  a részvény (az alaptermék) volatilitása, azaz a részvény időegység alatti relatív szórása, ami megegyezik az időegységre vonatkozó hozam szórásával. N(d)-k hozzávetőleg annak a valószínűségét adják, hogy P T nagyobb lesz K T -nél és az opciót lehívják. Valamekkora valószínűséggel rendelkezünk P 0 értékű részvénnyel Valamekkora valószínűséggel fizetünk K 0 –t érte 28

2007. tavaszHatáridős és opciós ügyletek18 Jegyezzük meg, hogy az opció értékét meghatározó tényezők között nem szerepel se a részvény bétája, se várható hozama. Egy opciós jogot úgy kell felfogni, hogy „kicsit” már most megvettük a részvényt, amiért „kicsit” már fizettünk is, meg később is fogunk még. A diszkontált pénzáramláson alapuló megközelítés zsákutca, mert képtelenség kifejezni a kockázatot, és így r alt -ot, mert az a részvény árfolyam-változásával és az idő előrehaladtával folyamatosan változik. (Ezért nem tudták annyi ideig megoldani.) 28

2007. tavaszHatáridős és opciós ügyletek19 Mitől függ c értéke? Nézzük meg a képlet változóit! Kötési árfolyam (K T ) Részvényárfolyam (P 0 ) Kamatláb (r f ) Lejáratig hátralévő idő (T) Részvény volatilitása (  ) Ha nő aakkor c értéke nő csökken nő 28

2007. tavaszHatáridős és opciós ügyletek20 Indokoljuk meg az egyes változók hatásának okait! A kötési árfolyam hatása szinte nyilvánvaló, a többi tényező szerepének megértéséhez az opció értékét részértékekre bontjuk szét. –Belső érték –Ingadozási érték –Részletfizetési érték Időérték 28

2007. tavaszHatáridős és opciós ügyletek21 Belső érték –Az opció azonnali lehívása eredményezné. –Amennyivel mégis több az opció értéke, az ún. időérték. c P0P0 P 0 -K T KTKT c 29

2007. tavaszHatáridős és opciós ügyletek22 KTKT Ingadozási érték c P c P 0 -K T P0P0 PTPT E(PT)E(PT) 29

2007. tavaszHatáridős és opciós ügyletek23 P0P0 KTKT Ingadozási érték és belső érték P 0 -K T Belső érték c P c PTPT E(PT)E(PT) 29

2007. tavaszHatáridős és opciós ügyletek24 A részvényárfolyam lejáratig adódó kockázatossága pozitívan hat c értékére: KTKT c P P0P0 PTPT KTKT c P P0P0 P T KTKT P0P0 PTPT c P KTKT c P P0P0 P T 30

2007. tavaszHatáridős és opciós ügyletek25 Az ingadozási érték tehát annál nagyobb, minél a részvény lejáratig hátralévő időre eső változékonysága. Mitől függ ez? –T-től –σ-tól –egészen pontosan -től KTKT c P c P 0 -K T P0P0 PTPT 30

2007. tavaszHatáridős és opciós ügyletek26 P0P0 P T=4 0 T t P P1P1 31

2007. tavaszHatáridős és opciós ügyletek27 Részletfizetési érték –Első érzetünkkel ellentétben c értéke nem a P 0 -K T belső értékhez „simul”, hanem a P 0 -K 0 ún. módosított belső értékhez. –Ez azzal magyarázható, hogy az opció lehívása lényegében egy részletre történő részvényvásárlást jelent, ahol az első részlet c, a második részlet K T. –K T -nek viszont csak a jelenértékét kell számolnunk, hiszen később fizetjük: 31

2007. tavaszHatáridős és opciós ügyletek28 K0K0 KTKT c P0P0 c P 0 -K T P 0 -K 0 K T -K 0 32

2007. tavaszHatáridős és opciós ügyletek29 –A részletfizetési érték nyilván K T -től, r f -től és T-től függ, valamint a lehívás valószínűségétől is: c P0P0 c P 0 -K T K T -K 0 Részletfizetési érték KTKT 1 N(d) d 32

2007. tavaszHatáridős és opciós ügyletek30 Összegezzük a három értékforrást! KTKT P 0 -K T Belső érték c P0P0 c Részletfizetési érték Ingadozási érték K T -K 0 Időérték 32

2007. tavaszHatáridős és opciós ügyletek31 Kötési árfolyam (K T ) Részvényárfolyam (P 0 ) Kamatláb (r f ) Lejáratig hátralévő idő (T) Részvény volatilitása (  ) Ha nő aakkor c értéke nő csökken nő

2007. tavaszHatáridős és opciós ügyletek32 c értéke „ráérzésre”: Nagy T és nagy σ Nagy T és kis σ Kis T és nagy σ Kis T és kis σ 33

2007. tavaszHatáridős és opciós ügyletek33 IV.2.2. Európai eladási opciók értéke lejárat előtt – a put-call paritás Az eladási opció értékét – az ún. put-call paritás segítségével – a vételiéből vezetjük le. A paritásos összefüggés felírásához két azonos eredményű (értékű) portfóliót állítunk össze, úgy, hogy az egyikben vételi, a másikban eladási opció szerepeljen. 34

2007. tavaszHatáridős és opciós ügyletek34 KTKT PTPT KTKT LC PTPT KTKT PTPT KTKT LP PTPT KTKT 34

2007. tavaszHatáridős és opciós ügyletek35 KTKT K0K0 -K 0 K0K0 P0P0 c K T -K 0 -P 0 p=c-P 0 +K 0 KTKT p=c-P 0 p 35

2007. tavaszHatáridős és opciós ügyletek36 Vázoljuk az eladási opcióknak is a belső, a részletfizetési és az ingadozási értékét! K T -P 0 Belső érték K0K0 KTKT KTKT K T -K 0 p P0P0 Ingadozási érték (+)Részletfizetési érték (-) 1 N(d) d K T -P 0 Belső érték Részletfizetési érték (-)Ingadozási érték (+) 35-36

2007. tavaszHatáridős és opciós ügyletek37 Mitől és hogyan függ p értéke? Kötési árfolyam (K T ) Részvényárfolyam (P 0 ) Kamatláb (r f ) Részvény volatilitása (  ) Lejáratig hátralévő idő (T) Ha nő aakkor p értéke csökken nő csökken nem egyértelmű 36

2007. tavaszHatáridős és opciós ügyletek38 IV.2.3. Osztalékot fizető részvényekre vonatkozó vételi és eladási opciók értéke lejárat előtt 36

2007. tavaszHatáridős és opciós ügyletek39 Eddigi értékelési módszerünkön csupán P 0 értelmezésén keresztül kell változtatnunk. –Korrigáljuk a lejáratig fizetendő osztalékkal. (diszkontráta: r f vagy r alt ?) A paritásos összefüggés is megváltozik: 37

2007. tavaszHatáridős és opciós ügyletek40 IV.2.4. Amerikai típusú vételi opciók értéke lejárat előtt Bármikor lehívhatjuk, ezért a jog birtokosa előtt folyamatosan két lehetőség kínálkozik: –Lehívja Realizálja a (pillanatnyi) belső értéket: P 0 -K T –Nem hívja le Realizálja a (pillanatnyi) opciós értéket (eladja): c Nyilván a nagyobb érték mellett fog dönteni. 37

2007. tavaszHatáridős és opciós ügyletek41 Amerikai vételi opció osztalékfizetés nélkül K0K0 KTKT c P0P0 c P 0 -K T P 0 -K 0 K T -K 0 Láthatóan c mindig nagyobb a belső értéknél (P 0 -K T ), így soha nem élnek a lehívás jogával, így a lehívhatóság joga értéktelen. c amerikai = c európai 37

2007. tavaszHatáridős és opciós ügyletek42 Amerikai vételi opció osztalékfizetéssel: P0P0 K0K0 c KTKT c P 0 DIV P 0 DIV -K T P 0 DIV -K 0 P 0 DIV + DIV(T) 0 –K T DIV(T) 0 eladáslehívás A korábbi lehívás mellett szólhat a T-ig kifizetésre kerülő osztalékok megszerzése. c amerikai > vagy = c európai 38

2007. tavaszHatáridős és opciós ügyletek43 IV.2.5. Amerikai típusú eladási opciók értéke lejárat előtt Itt is az a kérdés, hogy a belső érték vagy az opció pillanatnyi értéke a nagyobb-e: –Lehívja Realizálja a (pillanatnyi) belső értéket: K T -P 0 –Nem hívja le Realizálja a (pillanatnyi) opciós értéket (eladja): p 38

2007. tavaszHatáridős és opciós ügyletek44 KTKT KTKT K0K0 p K0K0 P0P0 p Látható, hogy alacsonyabb P 0 esetén – az egyre csökkenő részletfizetési érték miatt – jobb a korábbi lehívás („hamarabb jut K T -hez”). p amerikai > vagy = p európai eladáslehívás Amerikai eladási opció osztalékfizetés nélkül: 39

2007. tavaszHatáridős és opciós ügyletek45 P0P0 P 0 DIV KTKT KTKT K0K0 p K0K0 p DIV(T) 0 K T -(P 0 DIV +DIV(T) 0 ) = K T -P 0 DIV -DIV(T) 0 Az osztalékfizetés hatására a korábbi lehívás motivációja gyengül. p amerikai „kevésbé” > vagy = p európai DIV(T) 0 K T -(P 0 DIV +DIV(T) 0 ) = K T -P 0 DIV -DIV(T) 0 Amerikai eladási opció osztalékfizetéssel: 39

2007. tavaszHatáridős és opciós ügyletek46 IV.2.6. Opciók értékének meghatározása Black-Scholes táblázattal 1. lépés –volatilitás: 35,5%, lejáratig hátralévő idő: fél év 2. lépés –K T =63$, P 0 =59$, r f =2,5% (fél évre) 3. lépés: táblázat: 8,2 40

2007. tavaszHatáridős és opciós ügyletek47 Azonban a piaci árfolyam 6,1$. –Mit rontottunk el? –A „piac” kb. 42%-os volatilitást becsül. –Ez az ún. visszaszámított volatilitás. Eladási opció: 40

2007. tavaszHatáridős és opciós ügyletek48 „kockázat” „érték / ár” 1