2. Ismeretelmélet I.
A probléma Sok mindent tudunk. (Tudjuk, hogy most itt vagyunk. Tudjuk, hogy Mo. fővárosa Budapest, stb.) Élet és halál múlik időnként azon, hogy mit tudunk, és jól tudjuk-e. (Tudjuk, hogyan kell méretezni a hidat adott terhelésre.) Miért mondják minderre, hogy tudják, másra pedig azt, hogy nem? Mit „csinálnak” akkor, amikor tudják? Honnan tudjuk, hogy mire tehetjük fel az életünket? Ehhez az kell, hogy tudjuk, mi számít megbízható tudásnak. Ehhez pedig azt kell tudni, mi a tudás és hogyan lehet megbízható tudáshoz jutni. „Hogyan ismerjük meg a világot?” 19. század előtt nem önálló filozófiai diszciplina; már az ókori görögöknél is felmerült. EPISZTÉMÉ (ismeretelmélet = episztemológia): ismeretet, tudást, tudomány. Az alapvető probléma tehát az ismeret, a tudás mibenléte. Ismeretünk lehet nagyon sokféle dologról. Tudhatjuk: - az a valami ott a falon egy villanykapcsoló (felismerhetjük). - hogyan kell felkapcsolni vele a lámpákat (ism. a működtetés módszerét). - most itt ebben a teremben égnek a lámpák (ism. ennek a kijelentésnek az igazságtartalmát.) Tudom, hogy most itt vagyok. Tudok biciklizni. Tudom, hogy Mo. fővárosa Bp. Mi a közös mindebben? Miért nevezzük mindezt tudásnak? Mi a tudás? Hogyan tudjuk, amit tudunk? Mi történik, mit csinálunk, mikor mindezeket tudjuk? Ez a központi problémája az ismeretelméletnek. Bizonyos esetekben pl. élet és halál (jegy az indexben) múlhat azon, hogy mit tudunk, és mennyire biztosan tudjuk, amit tudunk. → annak kéne tudásnak lenni, ami megbízható, amiben bizonyosságunk van, nem pusztán a hitnek, a vélekedésnek. → mi számít megbízható tudásnak? Ehhez pedig azt kell tudni, hogy mi a tudás, és hogy lehet megbízható tudáshoz jutni.
Ismeretelmélet – episztemológia A filozófiai vizsgálódás egy alapvető területe: hogyan teszünk szert tudásra, melyek a tudás megszerzésének legbiztosabb módjai? Két alkérdés: A tudás definíciója Megszerzésének módja: honnan származik a tudásunk? Példák, amelyekről mindenki hallott: Empirizmus – inkább a tapasztalatra építő, Racionalizmus – inkább az ész tevékenységére építő módszer Ezek leegyszerűsítő címkék, de nem teljesen haszontalanok EMPIRIZMUS: Az érzéki tapasztalat a tudás egyetlen forrása. Minden ismeretünket a tapasztalat alapozza meg. Az ismeretekre csak tapasztalataink segítségével tehetünk szert. A tudomány a megfigyeléseken illetve a kísérleteken alapszik. Elveti a velünk született fogalmakat és tételeket, a megismerést az érzéki észlelésbe vezeti vissza. RACIONALIZMUS: Az általánosság és a szükségszerűség nem vezethető le a tapasztalatból, vagy csak az ész képességeként, előfeltételeként létező fogalmakból. Az emberi megismerés forrása az ész. Fogalmaink a tapasztalat előtt és attól függetlenül is léteznek.
Tudás Péter ismeri Jánost (B. Russell: ismeretség általi tudás (acquaintance) – nem feltétlenül eredményez tényismeretet Péter tud biciklizni, csomót kötni, – képesség általi tudás (know-how), kérdés: sikerült-e (és nem az, hogy igaz-e), achievement, praktikus tudás, explicit szabályismeret nélkül Propozicionális tudás (De lehetséges más, hasonló tudáskategóriákat is felállítani, régen Arisztotelésznél pl.: teoretikus, gyakorlati és techné (ebből jön a technika szavunk) jellegű tudáskategóriák voltak, a köznyelvben pedig elméleti és gyakorlati tudásról beszélünk.) Kezdjük az első alkérdéssel: meg kell határoznunk a tudás definícióját. Milyen értelemben használjuk a hétköznapi nyelvben a tudás/ismeret szavakat? Tudhatjuk: - hogy az a valami ott a falon egy villanykapcsoló ISMERTSÉG ÁLTALI TUDÁS - hogyan kell felkapcsolni a vele a lámpákat KÉPESSÉG ÁLTALI TUDÁS - hogy most itt ebben a teremben égnek a lámpák PROPOZÍCIONÁLIS TUDÁS Mi a világról szerezhető ismeret problémája kapcsán ez utóbbira fókuszálunk, arra, amelyik TÉNYISMERETTEL szolgálhat. Mi az, hogy tény? – A tény az, ami úgy van. Vegyük észre a finom különbséget! Milyen tényt fejez ki a „Mo. fővárosa Bp.” kijelentés? - Ez az ilyen-és-ilyen határok közötti földterület a Mo. névvel illetődik, az ilyen-és-ilyen szereppel rendelkező régiót fővárosnak nevezzük, és a Mo. nevű földterület ilyen-és-ilyen szereppel rendelkező régióját Bp. névvel illetjük. EBBEN AZ ESETBEN A KIJELENTÉS PUSZTÁN A NEVEKHEZ KÖTŐDIK. - Létezik egy Mo. nevű ország, egy Bp. nevű város, és Bp. ilyen-és-ilyen közigazgatási szerepet tölt be Mo-on belül. A KIJELENTÉS VALAMI MÖGÖTTES OBJEKTÍV LÉTEZŐHÖZ KÖTŐDIK („a világ valamilyen állapotához”): tőlünk független, és önmagában nem válhat kérdésessé. TÉNYKÉRDÉSEK PROBLÉMÁJA: CSAK AZ ÉN KIJELENTÉSEMTŐL FÜGG, VAGY FÜGGETLEN TŐLEM.
A propozícionális tudás Péter tudja, hogy Magyarország fővárosa Budapest Propozíció – állítás, kijelentés (és nem javaslat!) Speciális kapcsolat egy személy és egy kijelentés közt Kijelentés ≠ mondat (ugyanazt a kijelentést meg lehet fogalmazni különféle nyelveken, különféle mondatokkal, sőt kijelentés akkor is van, ha nincs mondat, amelyen kimondható). Egy mondat kifejezhet több kijelentést is (pl. ha rámutató elemeket tartalmaz (én, most, itt, stb.) - a kijelentés igazságértékkel bír Nézzük egy kicsit részletesebben, hogy MI IS A PROPOZÍCIONÁLIS TUDÁS. Láttuk, hogy a „Most itt ebben a teremben égnek a lámpák” mondat TÉNYISMERETTEL SZOLGÁL. A PROPOZÍCIÓ NEM A MONDAT, HANEM A KIJELENTÉS, AMIT A MONDATTAL TESZÜNK. (Nem a jogi értelemben vett indítvány, javaslat…) UGYANAZ A KIJELENTÉS KÜLÖNBÖZŐ MONDATOKKAL (különböző nyelven): Pl.: „Now in this hall the lights are on.” UGYANAZ A MONDAT TÖBB KIJELENTÉST IS KIFEJEZHET: Az indexikus elem mindig a kijelentőre vonatkozik. Pl.: „Én itt ülök.” – Attól függ, hogy igaz-e, hogy ki mondja. A kijelentés megfogalmaz egy tényállítást – ez AZ ÁLLÍTÁS LEHET IGAZ VAGY HAMIS. Ezt értjük azalatt, hogy a propozíció IGAZSÁGÉRTÉKKEL RENDELKEZIK.
A tudás megalapozása: Münchausen trilemma Hogyan tudom igazolni, amit tudok? És azt honnan tudom, amire az igazolás során építek? 1. Újabb és újabb bizonyítékokra kell hivatkoznom (végtelen regresszus). 2. Vagy körbenforgó érvelést alkalmazok: tudom, hogy p mert q, tudom, hogy q mert s, tudom, hogy s mert p. 3. Vagy valahol önkényesen meg kell szakítanom a bizonyítás láncolatát, mert már nem vagyok képes, nem tudok válaszolni arra a kérdésre, hogy honnan tudom, hogy q. Ez önkényes, hacsak nem feltételezem, hogy vannak olyan állítások, amelyek nem szorulnak semmiféle igazolásra, amelyek önmagukban igazoltak. Az, hogy 1, 2 és 3 közül kell választani, az a Münchausen trilemma
Melyek volnának azok az állítások, amelyek nem szorulnak külön igazolásra? A Bécsi Kör filozófus-tudósai: Logikai pozitivizmus, 20-as és 30-as évek, Bécs majd Berlin: a tapasztalatra kell építkezni 20. sz eleje: termtud-ok válsága; korábban bizonyosnak tűnő fundamentumok dőlnek meg (Einstein megdönti a newtoni egyenleteket, + kvantumelmélet) Logikai empiristák: Vissza kell térni a helyes megismerési módszerekhez: az empíriából kiindulva kizárólag logikai eszközökkel kell felépíteni a természettudományokat, anélkül, hogy beengednénk nem az empíriából származó ill. empirikusan nem igazolható állításokat. Fundamentum tehát az empíria: érzékileg bizonyos, kétségbevonhatatlan kijelentésekből kell kiindulni. A módszer: a megfigyelhető tényekre alapozott indukció. A megismerés alapegysége az egyén, az individuum
Propozícionális tudás: ősi kérdés, már Platón is ... Theaitétosz 202c: tudás: megindokolt igaz vélemény (ma úgy mondanánk: igazolt igaz vélekedés) S tudja, hogy P akkor és csak akkor, ha S azt hiszi, hogy P, S hite P-ben igazolt P igaz Prop. tudás: 1 személy ismerete 1 tényállításról (spec. kapcs. egy személy és egy kijelentés közt) Általános kifejezése: „S TUDJA, HOGY P”; S: a személy, aki tudással rendelkezik; P: a propozíciót, ami a tudás tárgyát képezi. Platón tudásról adott meghatározása (lásd bevezető előadás): megindokolt igaz vélemény. Ma: IGAZOLT IGAZ VÉLEKEDÉS. Ennek a meghatározásnak három összetevője van. (a) A „hit” itt a vélekedés szinonimája, nem vallásos hit (5 hét múlva) Egy olyan állításra, amit S nem hisz el, nem mondhatjuk, hogy S tudja. (c) Ha az állítás, amiről szó van, hamis, nem mondjuk, hogy tudásunk van róla. Ha valaki azt hinné, hogy itt és most nem égnek a lámpák, akkor azt mondanánk, hogy „rosszul tudja”. Tudáselméletünket úgy, hogy a tévedést ne nevezzük tudásnak. (b) Az, hogy S helyesen hiszi, hogy P lehetne a véletlen műve is. Tennessee Williams hipohonder és depressziós volt; azt hitte, hogy hamarosan hirtelen és váratlanul elragadja a halál – véletlenül lenyelte egy gyógyszeresüveg kupakját. Az, hogy igaza volt a hitében ebben az esetben csak a véletlen műve. Erre az esetre nem szívesen mondánk, hogy „tudta” hogy meg fog halni.
Miért kell mindez? a) A tudás kapcsolat egy személy és egy propozíció (köznyelvileg: egy hit) között (hit ≠ istenhit, faith ≠ belief) b) A tudás igaz kijelentés, a propozíció helyesen írja le a dolgok állását. A tudáselméletünket úgy építjük fel, hogy a tévedést ne nevezzük tudásnak (erre még visszatérünk) c) A tudás igazolt. Ha ez nem volna a definícióban, tudhatnánk valamit véletlenül is. Az igazoltságra tehát szükség van. EZ A FÓLIA ÖSSZEFOGLALJA AZ ELŐBB ELMONDOTTAKAT IGAZOLÁS alatt a hagyományos megközelítés két dolgot értett: - A hit igazolt, ha megfelel az S számára rendelkezésre álló bizonyítékoknak. HA INDOKOLT ÉS RACIONÁLIS S SZEMSZÖGÉBŐL HINNI, HOGY P. Az igazolás biztosítja, hogy annak, hogy S hite igaz, magas objektív valószínűsége van. Pl. HA A HIT MEGBÍZHATÓ KOGNITÍV FOLYAMATOK EREDMÉNYE.
Mindez logikusan hangzik, de… Edmund Gettier, 1963 (Filozófiai szemle, 1995, 3 oldalas cikk): - Smith és Jones ugyanarra az állásra pályázik Smith tudja, hogy Jones fogja megkapni az állást, és hogy Jonesnak 10 érme van a zsebében Ebből Smith levonja a P következtetést: „annak, aki megkapja az állást, 10 érme van a zsebében.” De Smith-nek tudtán kívül 10 érme van a zsebében, és ő fogja megkapni az állást Tehát P igaz, miközben ami alapján következtetett, hamis volt.
Nézzük a tudásdefiníciónkat! a, b, c, fennáll, P igaz, S hiszi, hogy P, S igazoltan hiszi, hogy P, mégsem szeretnénk ezt tudásnak hívni, mert nem a megfelelő bizonyítékok alapján tudja jól, közbülső hamisság áll fenn további példák: parkolás (a hallgató kölcsönadja autóját a szomszédos hallgatónak, közli vele, hol parkol az autó, de közben egy autó tolvaj ellopta és ugynoda visszaparkolta az autót) Puskázás: a hallgató hiszi, hogy P, P igaz, és a hallgató igazoltan hiszi, hogy P, mert egy igen okos hallgatóról puskázik, vagy előzőleg otthon jól állította össze a puskáját. Gettier előtt a tanár erre nem buktathatott volna! PUSKÁZÓS PÉLDA: Megbízható osztálytárs, eddig mindig tanult a vizsgákra, helyesen oldotta meg azokat. Mellé ülünk és másolunk. (a) Hisszük, amit lemásolunk. (b) Klasszikus igazolás-elmélet alapján igazoltan hisszük, mivel racionális ezt hinnünk. (c) Történetesen igaz is a lemásolt válasz. Gettier előtt a tanár erre nem buktathatta volna meg a diákot, hiszen a diák TUDTA a választ. (de lehetett volna, hogy a válasz nem igaz – pl a kitünő diák pont mára nem tudott készülni) Az ilyen esetek – ezeket nevezik GETTIER-ESETEKnek – annak köszönhetőek, hogy AZ IGAZOLÁS BEVETT FOLYAMATAI (a bizonyíték megléte, ill. a megbízható képességekre való hagyatkozás) NEM ELÉGSÉGESEK AHHOZ, HOGY BIZTOSÍTSÁK, HOGY A HIT NEM CSAK A VÉLETLEN FOLYTÁN IGAZ.
Gettier kihívás: S tudja, hogy P akkor és csak akkor Kössük össze az igazolás és az igazság feltételt (az igazságot a külvilág nyújtja, az igazolás belső, az emberi elme adja), ne legyen közbülső hamisság, az igazolás a valódi eset alapján szóljon az igazság mellett, és ne egy rivális eset alapján S tudja, hogy P akkor és csak akkor a) S azt hiszi, hogy P, b) S hite P-ben igazolt c) P igaz d) (b) biztosítja, hogy (a) és (c) nem véletlenül együtt fordulnak elő Más szóval: nincs olyan R igazság, amely, ha S tudomására jutna, megdöntené S igazolását P mellett, miközben P igaz A probléma: EGY HIT IGAZSÁGA ÉS IGAZOLÁSA a klasz. nézet alapján NEM JÁR MINDIG EGYÜTT. Meg kell akadályozni, hogy valamilyen véletlen esemény beférkőzzön az igazolás folyamatába. Ezt úgy oldhatjuk meg, ha AZ IGAZOLÁS ÉS AZ IGAZSÁG FELTÉTELEIT ÖSSZEKÖTJÜK. NE LEHESSEN RIVÁLIS, VÉLETLENSZERŰ MÁSIK TÉNY/ADAT, AMI A HITET FELBORÍTJA. Igazság és a róla való tudás nem esetlegesen van együtt, hanem szükségképpen. Ez elsőre problémát okozhat: Az igazságot a külvilág nyújtja, az igazolás belső (az elme tevékenysége eredményezi). Szeretünk így gondolni a világra: a róla szóló igazságok igazak akkor is, ha nem igazolta őket senki. Vannak igazságok: függetlenek tőlünk, függetlenek attól, h tudunk-e róluk, hogy igazoltuk-e őket. - Pl1: Föld kering a Nap körül (kopernikuszi fordulata előtt, sok millió évvel ezelőtt is). - Pl2: (igazolást legnagyobb „hatalommal” felruházó) matematikán belül is beszélhetünk nem igazolt (sőt, nem igazolható) igaz állításokról. (Gödel Nemteljességi tételei: a számelméleten belül megfogalmazhatók olyan állítások, amelyeket igaznak tekintünk, és mégsem tudjuk se igazolni se cáfolni őket, vagyis nem tudjuk levezetni sem őket, sem a negáltjukat az aritmetika axiómarendszeréből.)
b) nem foglalja magában c)-t? De miért kell c)? b) nem foglalja magában c)-t? Az igazolás erőssége alapján megkülönböztethetjük: Infallibilizmus: az igazolásból következik az igazság; hamis, de igazolt állítás nem lehetséges, az állítás igazoltsága magában foglalja az állítás igazságát. Fallibilizmus: egy állítás igazoltsága nem jelent (abszolút) bizonyosságot. Attól, hogy (jelenleg) igazoltnak számít, még bizonyulhat (később) tévesnek. Ha a tudás helyes értelmezésénél ilyen összefüggésre van szükség az igazság és az igazoltság között, akkor miért van külön szükségünk arra a kitételre, hogy P igaz. Miért nem foglalja magában az, hogy S hite P-ben igazolt azt, hogy P igaz? Az INFALLIBIZMUS elsőre szimpatikus nézet. Matematika: itt egy állítás akkor igaz, ha levezettük, vagyis igazoltuk. De: (Gödel tételek) az 1930-as években pontosan ez az értelmezése bukott meg a matematikának. Azóta tudjuk, hogy nem minden igaz állítás vezethető le, azaz igazolható. A matematikán kívül is probléma: Ha az én eljárásom korrekt, ha minden követendő szabályt követek, ha mindent figyelembe veszek, amit kell, akkor kizárt a tévedés. Hogy az igazolásom tényleg ilyen precíz legyen, ahhoz minden szabályt ismerni kell, minden lehetőséget számba kell venni, minden véletlenszerűséget ki kell szűrni – vagyis mindent kell tudni. (5 óra múlva: a teista nézet szerint az egyetlen mindentudó – Isten.) A FALLIBIZMUS elismeri, hogy bennünk van a tévedés lehetősége, hogy nem mehetünk biztosra. Tudásunknak tehát csak valamilyen valószínűsége lehet, abszolút bizonyossága nem.
Érzékszervi észlelés megcsalhat: Kanizsa háromszög Látjuk a háromszöget, pedig nincs ott.
Érzékszervi észlelés megcsalhat: Müller-Lyer illúzió Az egyik legegyszerűbb illúzió: a nyilak helyzete miatt a bal oldali szakaszt hosszabbnak észleljük, pedig ugyanolyan hosszúak
Érzékszervi észlelés megcsalhat: Világosságkonstancia Az A és a B négyzet a szürkének pontosan ugyanazon árnyalata, mégsem így látjuk. Az A négyzetet fényben lévő sötét, a B négyzetet árnyékban lévő világos mezőnek látjuk.
A kedves hallgató is „tudja”, hogy... Itt ül, hallgatja a filozófia tanszék oktatóját, aki a fallibilizmus-infallibilizmus problematikáját boncolgatja . Mindezt tudja, de nem infallibilis (tévedhetetlen) módon, mert nincs kizárva a tévedés, szkeptikus érvek felvethetőek: Descartes gonosz démona és álom-argumentuma; Hilary Putnam „agyak a tartályban” gondolatkísérlete, stb. Következtetés: vagy infallibilisták vagyunk, nem kell a c), se a d), de akkor igen kevés dologra mondhatjuk, hogy tudjuk, és ez nem volna praktikus elmélet. Vagy pedig fallibilisták: kell a c) és a d), mert az igazolás nem implikálja az igazságot NÉZZÜK A FÓLIA PÉLDÁJÁT! Mit kell itt érteni azon, hogy tudja? Igazoltan véli? Tudja, mert gyakorolta? Tudjuk-e, hogy a tudja szó melyik értelmében szerepel itt? – nincs válasz – még mindig nem tudjuk, hogy mi a tudás. Mi okom van tehát ezt hinni? Érzékszervi adataim igazolják? Ellenvetés: illúziók (pl.: Müller-Lyer, Kanizsa-háromszög) Kell tehát a P igaz kitétel, mert csak valódi, rajtunk kívüli igazságra szeretnénk a tudást használni. Rekonstruáljuk az ÁLOMARGUMENTUMot az Értekezés a módszerről című műből: 1. előfordul, hogy valós létezőnek tekintünk álombéli dolgokat; 2. nincs különbség az álombeli, és a valós tapasztalat között; 3. konklúzió: sosem lehet biztos jelek alapján megkülönböztetni az álmot a valóságtól, lehetséges, hogy mindig álmodunk. DÉMON-ARGUMENTUM: gonosz démon manipulálja az elménekt – ez episztemikusan ekvivalens lehet a mindennapi tapasztalattal. AGYAK A TARTÁLYBAN: egy gonosz tudós agyunkat egy szuperokos számítógéphez csatlakoztatta, amely azt az érzést kelti bennünk, hogy minden, amit látunk és érzékelünk, valóságos.
Propozícionális tudás: Definíció Propozícionális tudás: Igaz kijelentésekben való hit, olyan fallibilis bizonyítékok alapján, amelyek biztosítják, hogy a kijelentések igazságába vetett hit nem véletlenszerű. FELOLVASNI!
Szkepticizmus – mi is ez? A szkeptikus kételkedik egy kijelentésben, vélekedésben, vagy elméletben, hacsak nem talál kielégítő indokokat arra, hogy másként tegyen Általában egészséges hozzáállás – ellenőrizzük az állításokat Ugyanakkor nem sokra vezetne mindennel szemben szkeptikusnak lenni, az emberi élet, tudomány stb. a bizalomra épül Egyértelműen az ismeretelmélet területére tartozik, amelynek feladata annak vizsgálata, hogy hogyan győződhetünk meg tudásszerző módjaink alkalmasságáról. Két értelemben is beszélhetünk róla: Pozitív tanítás, mely szerint semmit sem tudunk; tudatlanságunk tézise – ez így öncáfoló volna, ez ugyanis alátámasztásra szorul, és ebben is kételkedhetünk. Vagy inkább: a vizsgálódás valamely területén a tudásigénnyel szemben támasztott kihívás, rákérdezés: honnan is tudjuk, amit tudunk? Láttuk, hogy ha megengedem, hogy tévedhetek, akkor is kellemetlenségekbe ütközöm, és ha megengedem, hogy tévedhetetlen legyek, akkor is. Ez SZKEPSZISHEZ vezet. (KUTATÁS ógörögül.) Ellenőrizni az állításokat a hétköznapokban is jövedelmező dolog. Ha mindennel kapcsolatban kételkedünk, nem vezet sehova. Így működünk a hétköznapokban is: mikor elfogadunk valamit, bízunk abban, hogy úgy van. MI ALAPJÁN BÍZUNK ABBAN, HOGY AKI VALAMIT ÁLLÍT, AZ SZAVAHIHETŐ: - érvelése meggyőző (ergo tudjuk – visszajutottunk) - van egy tapasztalat, ami igazolja - az illető egy autoritás Ez egy komoly probléma.
Szkepticizmus tovább Eliszi Pürrhón (i.e. 360 – 270.): a vizsgálódás terméketlen és nyugtalanító, mivel nem tudjuk eldönteni, hogy egy kijelentés mellett vagy ellen felhozott érvek a meggyőzőbbek-e. Függesszük fel az ítéleteinket, és érjük el így az ataraxiát, a lelki béke állapotát. De lehet a szkepticizmus egy megismerési módszertan is. Módszertani szkepticizmusra példa: Descartes megint (Értekezés a módszerről, 4): „Minthogy azonban akkoriban csak az igazság kutatásának akartam ‚élni, úgy gondoltam, hogy épp az ellenezőjét kell tennem: el kell vetnem mint feltétlen hamisat mindazt, amiben csak a legkisebb mértékben is kételkedhetem, hogy lássam, nem marad-e végül is valami a meggyőződésemben, ami teljesen kétségbevonhatatlan.” Descartes: úgy jutok el az igazsághoz, hogy MINDENT, AMIBEN KÉTELKEDHETEK ELVETEK. Nem eldönthető kérdést csinálok belőlük, hanem azt mondom, hogy hamis.
Descartes „Így, mivel érzékeink némelykor megcsalnak bennünket, fel akartam tenni, semmi sem olyan, amilyennek érzékeink mutatják. S mivel vannak emberek, akik még a geometria legegyszerűbb tárgyaira vonatkozóan is tévednek okoskodásaikban, és hamis következetéseket vonnak le, azért - magamról is úgy ítélve, hogy éppúgy tévedhetek, mint bárki más - elvetettem mint hamisakat mindazokat az érveléseket, amelyeket azelőtt bizonyításoknak vettek. Végül pedig azt gondoltam, hogy ugyanazok a gondolatok, amelyeket ébrenlétünkben gondolunk, álmunkban is jelentkezhetnek, anélkül, hogy ebben az esetben csak egy is közülük igaz volna. Ezért elhatároztam, hogy felteszem, hogy mindazok a dolgok, amelyek valaha is bejutottak elmémbe, nem igazabbak, mint álmaim csaló képei. De csakhamar láttam, hogy mialatt így mindent hamisnak akartam felfogni, szükségképpen kell, hogy én, aki ezt gondoltam, legyek valami.” Minden megcsalhat – sarkos kétely: mindent, ami bejut az elmémbe, kizárok. Mi marad ott? (Előfeltevés, hogy kell maradnia valaminek.) Konklúzió: cogito ergo sum. Szükségképpen – ki van zárva bármiféle véletlenszerűség; nem lehet másképpen.
„S mivel észrevettem, hogy ez az igazság: gondolkodom, tehát vagyok, olyan szilárd és olyan biztos, hogy a szkeptikusok legtúlzóbb feltevései sem képesek azt megingatni, azért úgy gondoltam, hogy aggály nélkül elfogadhatom a filozófia amaz első elvének, amelyet kerestem.” „Azután figyelmesen megvizsgáltam, mi vagyok én. Láttam, hogy el tudom képzelni: nincs testem, nincs világ és nincs tér, amelyben vagyok. De azért azt nem tudom elképzelni, hogy magam nem vagyok; ellenkezőleg, éppen abból, hogy azt gondolom, hogy más dolgok igazságában kételkedem, egészen világosan és bizonyosan az következik, hogy vagyok. Ellenben mihelyt csak megszűntem volna gondolkodni, nem volna semmi alapom azt hinni, hogy vagyok, mégha igaz volna is minden egyéb, amit valaha gondoltam. Ebből felismertem, hogy olyan szubsztancia vagyok, amelynek egész lényege vagy természete abban van, hogy gondolkodik, s amelynek léte nem függ sem valamely helytől, sem valamilyen anyagi dologtól.” A cogito ergo sum szilárd és biztos mint igazság. Hogyan ellenőrizzük ezt? TÉTELEZZÜK FEL, HOGY HAMIS (ezzel maradunk a descartesi kontextusban): gondolkodom – egyetlen lehetséges negálás = NEM GONDOLKODOM DE EZ IS EGY GONDOLAT! Ezért ez nem tagadható a kétértékű logikán belül. A gondolom/gondolok egy cselekvést kifejező ige, ami mögött ott a létező cselekvő. Descartes nem belátja a kifejezés igazságát, hanem megmutatja, hogy negálása paradoxonhoz vezet. Így lesz egy biztos mondata, de nem tud rá rendszert építeni.
A tudásszerzés egy lehetséges alternatív módja: hermenetikai körkörösség I. Heidegger és Gadamer (XX.sz.) módszere: az értelmezés, az értelemadás filozófiai módszere. Tudásunkban ugyanis nem különíthető el, de megkülönböztethető a tapasztalat és annak értelmezése. Minden tudásunkban, vélekedésünkben, hitünkben egyszerre van benne a tapasztalat és az értelmezés.
Hermenetikai körkörösség II. Valamit mindig mint valamit értünk meg. Nincs interpretálatlan tapasztalat. Csak jobb és rosszabb interpretációk vannak. A tapasztalat hermeneutikájának lényege az, hogy a tapasztalatot a szöveg analógiájára fogjuk fel. A szöveg-analógia alapján a tapasztalat megértése körkörösséget foglal magába. Egyrészt a szöveg egésze alapján kell megérteni a kiválasztott részt ill. a szavakat, és megfordítva. Ez a rész és egész kölcsönös egymásrautaltsága. Másrészt a megértéshez mindig valamilyen előzetes értelmezési feltevéssel kell hozzáfogni, ami azután finomítható, pontosítható vagy elvethető.