Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.

Slides:



Advertisements
Hasonló előadás
Az anyagszerkezet alapjai
Advertisements

Készítette: Bráz Viktória
Radioaktivitás Természetes radioaktív sugárzások
Radioaktivitás Henry Becquerel: egy véletlen során felfedezi a radioaktivitás jelenségét 1895-ben. Pierre és Marie Curie: 8 tonna uránszurokércből 0,1.
Energia a középpontban
Radioaktivitás és atomenergia
Elektron hullámtermészete
2010. augusztus 16.Hungarian Teacher Program, CERN1 Gyorsítók Veszprémi Viktor ATOMKI, Debrecen Supported by OTKA MB
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Az atomok Kémiai szempontból tovább nem osztható részecskék Elemi részecskékből állnak (p, n, e) Elektromosan semlegesek Atommagból és elektronokból.
Radioaktivitás, izotópok
A termeszétes radioaktivitás
Orvosi képfeldolgozás
Radioaktív anyagok szállítása
Tartalom Az atom fogalma, felépítése Az atom elektronszerkezete
Készítette: Borsodi Eszter Témakör: Kémia I.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Gazdálkodási modul Gazdaságtudományi ismeretek I. Üzemtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Az atommag.
Magfúzió.
Tartalom Az atom felépítése Az atom elektronszerkezete
Atomenergia.
Energia Energia: Munkavégző képesség Különböző energiafajták átalakulhatnak Energiamegmaradás: zárt rendszer energiája állandó (energia nem vész el csak.
 Selyemfonálra függesztünk egy alumíniumfonálból készített üreges hengert.  A henger nincs elektromosan töltve.  Elektromosan töltött rúddal közelítünk.
Mit tudunk már az anyagok elektromos tulajdonságairól
Az atommag 7. Osztály Tk
Halmazállapot-változások
A gamma-sugárzás nagyfrekvenciájú elektromágneses hullámokból (1019 Hz) álló sugárzás.
Az atommag szerkezete és mesterséges átalakítása
Az anyagok részecskeszerkezete
Az atom felépítése.
A termeszétes radioaktivitás
sugarzaserzekelo eszkozok
A termeszétes radioaktivitás
Radioaktivitás II. Bomlási sorok.
Jean Baptiste Perrin ( )
Az elektromos áram.
Készitették: Dimény Leonóra Nemes Izabella Sütő Ruth Szigyártó Timea II.csoport.
Környezetkémia-környezetfizika
Egyszerű ionok képződése
Az atom sugárzásának kiváltó oka
A radioaktivitás és a mikrorészecskék felfedezése
A kvantum rendszer.
Természetes radioaktív sugárzás
A fény kettős természete. Az elektron hullámtermészete.
Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Az atommag alapvető tulajdonságai
Úton az elemi részecskék felé
Máté: Orvosi képfeldolgozás1. előadás1 A leképezés tárgya Leképezés Képfeldolgozás Felismerés Leletezés Diagnosztizálás Terápia Orvosi képfeldolgozás Minden.
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
E, H, S, G  állapotfüggvények
2. AZ ATOM Atom: atommag + elektronfelhő = proton, neutron, elektron
Elektromosság 2. rész.
RÖNTGENSUGÁRZÁS.
Elektronszerkezet. 1.Mi az atom két fő része? 2.Milyen elemi részecskék vannak az atommagban? 3.Milyen töltésű a proton? 4.Mi a jele? 5.Mennyi a tömege?
Általános kémia előadás Gyógyszertári asszisztens képzés
Nukleáris medicina Lényege: A radioaktív izotópok diagnosztikai és therápiás célból való felhasználása.
Az atomok szerkezete.
A nagyon sok részecskéből álló anyagok
AZ ATOM FELÉPÍTÉSE.
FAZEKAS ANDRÁS ISTVÁN PhD c. egyetemi docens
I. Az anyag részecskéi Emlékeztető.
Atomenergia.
A) hidrogénizotóp (proton)_____1H1 B) hidrogénizotóp (deutérium)__1H2
Előadás másolata:

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul

2. Lecke Instabil anyagok

Instabil atomok bomlása A Termodinamika II. főtétele szerint a természetben az energiacsökkenés felé, azaz az egyensúly kialakulása felé vezető folyamatok játszódnak le. Az instabil atommagok az energiacsökkenésre irányuló folyamatok következtében átalakulnak stabil izotópokká. Az átalakulás közben az energiát átadja a környezetének, hő illetve sugárzás formájában.

Instabil atomok bomlása Az instabil izotópok átalakulása során az atom energetikailag stabilabb állapotba kerül. Előfordul, hogy az instabil izotópból nem csupán egy átalakulás során lesz stabil izotóp; a stabil állapot eléréséhez akár 8-10 lépés is szükséges lehet. A legtöbb esetben valamilyen ólom módosulat a végső állomás, mert az ólomnak rendkívül stabil izotópjai vannak.

Instabil atomok bomlása Az ólommal ellentétben bizonyos elemek aránylag kis energiaközléssel instabil állapotba hozhatóak. Ilyen energiaközlésnek számít például a neutronokkal történő bombázás, amely hatására instabillá válnak az eredetileg stabil izotópok.

Radioaktivitás Radioaktivitásnak nevezzük az instabil izotópok átalakulását. A radioaktivitás lehet természetes és lehet mesterséges is. Természetes radioaktivitás a természetben megtalálható elemek instabil izotópjainak átalakulása. Erre példa a rádium, uránium, szén-14-es izotópjának átalakulása. A 224-es tömegszámú rádium izotóp radonra és héliumra bomlik el: Ra Rn 4 2 He C 7 N -1 ß + 0 A C-14-es izotóp átalakulása során a neutron átalakul protonná miközben egy elektront veszít. Az átalakulás során ß-sugárzás lép fel.

C-14 izotóp 14 6 C 7 N -1 ß + 0 A C-14-es izotóp átalakulása során a neutron átalakul protonná miközben egy elektront veszít. Az átalakulás során ß-sugárzás lép fel. A mesterséges radioaktivitás során stabil atommagok reagáltatása eredményeképpen instabil izotópok jönnek létre. Ezt a folyamatot használják fel az atomerőművekben: mesterséges úton – neutron bombázásával – instabil izotópokat hoznak létre, amelyek azután bomlásuk során sugározó energiát bocsátanak ki. Frederic Joliot Curie állított létre először olyan elemet, amely nem természetben előforduló atommag és radioaktív sugárzást tudott kibocsátani. A radioaktív tevékenység legfontosabb kísérő jellemzője a sugárzás.

Sugárzások A radioaktív tevékenység által kibocsátott sugárzás elektromágneses térben eltérül vagy nem térül el: radioaktív sugárforrás   - + A negatív pólus felé eltérülő sugárzás az  sugárzás. Az  sugárzás lényegében hélium atommagokból áll (He 2+ ), viszonylag kis energiatartalmú, kis áthatoló képességgel rendelkező sugárzás. Az  sugárzást néhány méteres levegőréteg már képes elnyelni.

 és  sugárzás A pozitív pólus felé elhajló sugárzás a  sugárzás. A sugárzás elektronokból áll. Energiatartalma nagyobb, mint az  sugárzásé, és nagyobb az áthatolóképessége is. Elnyeletéséhez fémlemez szükséges. A  sugárzás nem változtatja meg az irányát az elektromágneses térben. Ez a sugárzás nagy áthatoló képességgel rendelkező, nagy energiatartalmú foton sugárzás. Az elnyeletéséhez ólom lemezekre van szükség.

Az elektron tulajdonságai Az elektron egységnyi negatív töltésű részecske. Tömege 1/1840-ed része a proton tömegének, tehát a protonhoz viszonyítva elhanyagolható nagyságú. Sebessége közelíti a fénysebességet. Az elektronnak kettős természete van: egyrészt részecske tulajdonságú (korpuszkuláris tulajdonság); másrészt hullámtermészettel is rendelkezik. A fény is, hasonlóan az elektronhoz, kettős természettel rendelkezik: egyrészt részecske tulajdonsággal, mivel tömege van; másfelől viszont hullámtermészete is van, ami azt jelenti, hogy nem feltétlenül a tömeggel rendelkező részecskék terjedése történik, hanem az energia áramlik.

Az atom szerkezet vizsgálata  sugárzással A Rutherford kísérlet során derült fény az atom szerkezetére. Rutherford  -részecskéket (hélium atommagokat) kibocsátó sugárforrást helyezett el 2 ernyő elé. A két ernyő közé rendkívül vékony alumínium lemezt helyezett el:  -sugárzást kibocsátó forrás 1. ernyő2. ernyőAl fólia Az 1. ernyőn kis számú felvillanásokat észlelt, míg a 2. ernyőn nagy volt a felvillanások száma. Az 1. ernyőn akkor történik felvillanás, ha az  -részecskék visszaverődnek valamiről, míg a 2. ernyőn akkor lehet felvillanásokat észlelni, ha az  - részecskék áthatolnak az alumínium lemezen.

Kérdések a leckéhez Instabil atomok bomlása Radioaktivitás A különféle sugárzások jellegzetességei Forrás: Dr. Licskó István, Laky Dóra (2003)

KÖSZÖNÖM FIGYELMÜKET!