Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.

Slides:



Advertisements
Hasonló előadás
Rendszertervezés CAD.
Advertisements

Verő Balázs Dunaújvárosi Főiskola AGY Kecskemét, 2008 június 4.
Anyagmodellek II.
MECHANIZMUSOK SZÁMÍTÓGÉPES MODELLEZÉSE
Számítógépes grafika, PPKE-ITK, Benedek Csaba, 2010 Geometriai modellezés 2. előadás.
A folyamatok térben és időben zajlanak: a fizika törvényei
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mérnöki Informatikus MSc 4. Előadás.
A virtuális technológia alapjai c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar, Alkalmazott Matematikai Intézet 2. Előadás Tömör testek modellje.
A virtuális technológia alapjai Dr. Horváth László Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Alkalmazott.
6. Előadás Alkatrészkapcsolatok modellezése
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
9. Előadás Gyártási folyamatok modellezése
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mechatronikai Mérnöki MSc 2. Kontextuális.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mechatronikai Mérnöki MSc 6. Modellezés.
Dr. Horváth László – PLM – CCM – 2. előadás: Határfelület-ábrázolás és Euler -i topológia A CAD/CAM modellezés alapjai Dr. Horváth László Budapesti.
Mechanikai rendszerek elemzése a véges elemek elvén
A virtuális technológia alapjai Óbudai Egyetem Neumann János Informatikai Kar, Alkalmazott Matematikai Intézet 4. Előadás Alakmodell fejlesztése Alak építése.
Modellezés és tervezés c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Alkalmazott Informatikai Intézet Mérnöki Informatikus MSc.
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mérnöki Informatikus MSc 4. Előadás A.
A virtuális technológia alapjai
A virtuális technológia alapjai Dr. Horv á th L á szl ó Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Intelligens Mérnöki Rendszerek.
Óbudai Egyetem Neumann János Informatikai Kar
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 8.
A virtuális technológia alapjai Dr. Horváth László Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Alkalmazott.
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
A virtuális technológia alapjai Dr. Horv á th L á szl ó Budapesti Műszaki Főiskola Neumann János Informatikai Kar, Intelligens Mérnöki Rendszerek.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 10.
Budapesti Műszaki Főiskola Bánki Donát Gépészmérnöki Főiskolai Kar Forgácsolási technológia számítógépes tervezése 2. Előadás 2,5 tengelyű marási ciklusok.
A modellező rendszerek közötti adatcsere és szabványai Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 8.
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mérnöki Informatikus MSc 9. Előadás és.
A virtuális technológia alapjai
A GEOMETRIA MODELLEZÉSE
Gyártási modellek Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 7. előadás.
A CAD/CAM modellezés alapjai
Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek.
Modellezés és szimuláció c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mechatronikai Mérnöki MSc 11.
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 6. előadás Véges elemeken.
Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév 1. előadás Bevezető a számítógépen.
Budapesti Műszaki Főiskola CAD/CAM szakirány A CAD/CAM modellezés alapjai 2001/2000 tanév, II. félév 1. Előadás A számítógépes modellezés fogalma, szerepe.
Bevezetés az alakmodellezésbe I. Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I.
Budapesti Műszaki Főiskola Bánki Donát Gépészmérnöki Főiskolai Kar Forgácsolási technológia számítógépes tervezése 5. Előadás Fúrási és esztergálási.
Bevezetés az alakmodellezésbe II. Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I.
1 A geometriai modell és struktúrája Budapesti Műszaki Főiskola A CAD/CAM modellezés alapjai 2000/2001 tanév, II. félév 2. előadás A geometriai modell.
Szerelési egységek modellje
Összefüggések modelleken belül Budapesti Műszaki Főiskola Neumann János Informatikai Főiskolai Kar A Műszaki Tervezés Rendszerei 2000/2001 tanév, I. félév.
Budapesti Műszaki Főiskola Bánki Donát Gépészmérnöki Főiskolai Kar Forgácsolási technológia számítógépes tervezése 3. Előadás Felületek megmunkálásának.
Ismeretlen terhelésű szakaszok adaptív szabályozása József K. Tar, Katalin Lőrinc, László Nádai Budapesti Műszaki Főiskola H-1034 Budapest, Bécsi út 96/B.
Az áramlástan szerepe az autóbusz karosszéria tervezésében Dr
Geotechnikai feladatok véges elemes
A Van der Waals-gáz molekuláris dinamikai modellezése Készítette: Kómár Péter Témavezető: Dr. Tichy Géza TDK konferencia
Mechanikai rendszerek leírása
INDC - 1st International Diabetes Conference, MedicSphere Zárókonferencia.
Számítógépes tervezőrendszerek c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mechatronikai Mérnöki MSc 4. Laboratóriumi.
Intelligens Mérnöki Rendszerek Laboratórium Alkalmazott Matematikai Intézet, Neumann János Informatikai Kar, Óbudai Egyetem Mielőtt a virtuális térbe lépnénk.
TERMÉKSZIMULÁCIÓ Modellek, szimuláció 3. hét február 18.
Elvárásoknak való megfelelés Tervezés szilárdságra Végeselem módszer Termékszimuláció tantárgy 5. előadás március 25. Előadó: Dr. Kovács Zsolt.
Modellezés és tervezés c. tantárgy Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Matematikai Intézet Mérnöki Informatikus MSc 8. Előadás A.
Hegesztési folyamatok és jelenségek véges-elemes modellezése Pogonyi Tibor Hallgatói tudományos és szakmai műhelyek fejlesztése a Dunaújvárosi.
Kontinuum modellek 1.  Bevezetés a kontinuum modellekbe  Numerikus számolás alapjai.
Operációkutatás I. 1. előadás
Számítógépes szimuláció
Polák József Tanszéki mérnök Közúti és Vasúti Járművek Tanszék
Krossz-diszciplináris termékdefiníció
Csuklós munkadarab-befogó készülék koncepcionális tervezése
Modellezés funkcionális alaksajátosságokkal
Alaksajátosságokkal való módosításon alapuló alakmodellezés
Elemzések a véges elemek elvén
A termék mint rendszer modellezése
Előadás másolata:

Mérnöki objektumok leírása és elemzése virtuális terekben c. tantárgy Budapesti Műszaki Főiskola Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Mérnöki Informatikus MSc 5. Előadás Virtuális prototípus Dr. Horváth László egyetemi tanár

Tartalom Dr. Horváth László BMF-NIK-IMRI Fizikai és virtuális törésteszt Véges elemeken alapuló elemzési modellezés és elemzés Fizikai és virtuális prototípus

Dr. Horváth László BMF-NIK-IMRI Fizikai prototípus Valóságos termék a benne megvalósuló mérnöki munka, valamint az annak alapját képező elmélet és módszertan kipróbálására. Egyszerűsített és gyors prototípusok. Költséges és időigényes gyártást és méréseket igényelnek. Ésszerű költségek mellett csak korlátozott vizsgálatok valósíthatók meg. Virtuális gyártás Termékfejlesztés fizikai gyártás és mérés nélkül, virtuális prototípus segítségével. Fizikai vizsgálatok, az ezekből leszűrt tapasztalatok alapján kidolgozott szimuláción alapul. Virtuális prototípus A virtuális prototípus a virtuális térben épül, elemzések során mutatja, hogy a valóságos prototípus, amelynek számítógépi reprezentációja, miként viselkedne. Nagytömegű tervezett kísérlet végezhető. Tudásháttere folyamatosan fejleszthető, sok év tapasztalata építhető be. Az ember általában a számítép képernyőjén keresztül kommunikál vele, de már alkalmaznak ennél fejlettebb eszközöket is. Modellezési, szimulációs és alkalmazási területi szakértők magas szintű együttműködését igényli.

Numerikus módszer, amelynél hálóban elhelyezett véges elemekkel való közelítést alkalmaznak. A modellezés és elemzés egyeduralkodó módszerévé vált Az elemzés az alkatrészen elhelyezett, alkalmas nagyságú, az elemzési feladat igénye szerint meghatározott, véges számú elemen történik. Felület vagy test bármely pontjában alkalmas az igénybevételek számítására. Számítógépben szimulált valósággal végzett vizsgálat. Valóságos üzemi környezetben való működés szimulációja valósítandó meg. A vizsgált paraméterek értékét elemző programokba épített matematikai összefüggések alapján határozzák meg. Általános feladatmegoldó eszköz: bármely bonyolultságú alakon, bármely helytől függően meghatározható jellemző elemezhető, bármely terhelés vagy határfeltétel figyelembe vehető. Terhelési modell: terhelések és határfeltételek definiálása és elhelyezése csomókon vagy geometrián Véges elemeken alapuló elemzési modellezés és elemzés FEM, Finite Element Modeling and FEA, Finite Element Analysis Dr. Horváth László BMF-NIK-IMRI Csomó Él

A véges elemek módszerének rövid fejlődés-története Dr. Horváth László BMF-NIK-IMRI Repülőgépek szerkezeti elemeinek elemzésénél merült fel hagyományos vizsgálatokkal nem megoldható feladat. A kifejezést Clough használja először, 1960 –ban. Első könyv: Zienkiwiecz és Chung, as évek vége: nemlineáris problémák első megoldásai. Oden, 1972: könyv nemlineáris problémákról. 70 -es évek: matematikai alapok lefektetése. Ma gyakorlatilag minden mérnöki virtuális rendszer tartalmaz vagy integrál ilyen funkcionalitást.

A véges elemeken alapuló elemzés módszere Dr. Horváth László BMF-NIK-IMRI Numerikus módszer, amelynél hálóban elhelyezett véges elemekkel való közelítést alkalmaznak. A vizsgált paraméterek értékét elemző programokba épített matematikai összefüggések alapján határozzák meg. Általános feladatmegoldó eszköz: bármely bonyolultságú alakon, bármely helytől függően meghatározható jellemző elemezhető, bármely terhelés vagy határfeltétel figyelembe vehető. Terhelési modell: terhelések és határfeltételek definiálása és elhelyezése csomókon vagy geometrián

Vizsgált paraméterek Dr. Horváth László BMF-NIK-IMRI Példák: Erők és hőmérsékletek csomókban. Élekre és felületekre ható koncentrált vagy megoszló erő vagy nyomás. Gyorsulás: gravitáció, egyenes vonalú, körpályán. Környezeti hőmérséklet. Csomóban és elosztva ható hőforrások. Hővezetés és sugárzás lapon és élen. Feszültség, alakváltozás, gradiens, nyomás. Belső erő, reakcióerő. Nyomaték. Alakváltozási energia. Sajátfrekvencia, Hőmérséklet, gradiens, hő áram. Mágneses tér. Kompozit anyagoknál: rétegenkénti vizsgálat, rétegszakadás vizsgálata. A terhelés hely és idő függvényében, matematikai összefüggéssel leírhatóan változhat

Véges elemek Dr. Horváth László BMF-NIK-IMRI P-elemek: pontos illesztés a geometriára, pl. max. ötöd rendű ábrázolással A másodfokú élen egy, a harmadfokú élen két közbenső csomópont definiálható. Elsőfokú Ahol megengedhető linearizálni kell a diszkretizált geometrián. Tömör test Háromdimenziós héj Kétdimenziós héjEgydimenziós

Hálógenerálás Dr. Horváth László BMF-NIK-IMRI Geometriával asszociatív, paraméteres háló generálása görbéken, felületeken, tömör testeken, furatokat tartalmazó térfogatokon és belső üregeken. Globális és lokális hálósűrűség-definíció. Automatikus sűrűségátmenet. Adaptív hálógenerálás a háló által okozott elemzési hibák minimálisra csökkentése a hálósűrűség, az elem-rendűség és az elemalak automatikus módosításával egy korábban létrehozott durva hálón.

Terhelések és határfeltételek Dr. Horváth László BMF-NIK-IMRI Terhelések definiálása: Ponton, élen, görbén, felületen, szekción. Csomókban és elemeken Matematikai összefüggéssel. Meghatározott pontokon átmenő felületen. Korlátok definiálása: Szabadságfokok. Ponton, élen, görbén, felületen, szekción. Alaptípusok: befogás, csap (1R), csúszó támasz (1T), érintkezés (2T). Virtuális alkatrész: 3T, 3R definiálásának lehetőségével, implicit. Matematikai összefüggéssel. Meghatározott pontokon átmenő felületen. Csomó elmozdulása. Több terhelés és korlát összetett definiálása.

Az elemzések eredményeinek megjelenítése Dr. Horváth László BMF-NIK-IMRI Forrás:

Az elemzések eredményeinek megjelenítése Dr. Horváth László BMF-NIK-IMRI Forrás:

Az elemzések eredményeinek megjelenítése Dr. Horváth László BMF-NIK-IMRI Forrás:

Törésteszt (Crash test) Dr. Horváth László BMF-NIK-IMRI Autógyártók biztonságot hagyományosan az új modellek töréstesztjével biztosítják Emberszerű fizikai modellt helyeznek el a vezetőülésben: crash-test dummy. Nekivezetik pl. téglafalnak. Egy törésteszt nagyjából 750,000 dollár. Szabványos országúti törésteszt babával végzett számítógépi szimuláció a várható fej és mellkas sérülés meghatározására a karambol során. Az autókat és biztonsági rendszereiket számítógépen tervezik. Ez kényszerít a kapcsolódó töréstesztek szimulációra való áthelyezésére.

Virtuális törésteszt (Virtual crash test) Dr. Horváth László BMF-NIK-IMRI Számítógép-rendszer a törésteszt szimulációjára. Az új konstrukciók finomításának új eszköze Emberszerű modellt helyeznek el a vezetőülésben (virtual crash-test dummy). Kétlépéses vizsgálat Első lépés: a teljes emberi testre kiterjedő szimuláció azoknak a részeknek a meghatározására, amelyek sérülhetnek. A második lépés: a sérülékeny részek részletes modellje alapján állapítják meg a lehetséges sérülést. Számítógépes tomográfiával is összekapcsolják. Minél fejlettebb a modell, annál kevesebb fizikai autót kell összetörni.

Virtuális törésteszt módszerei Az emberi test virtuális reprezentációja képes ellátni a járművek tervezőit a valóságos emberek sérüléseiről, amelyeket különböző típusú ütközéseknél szerezhetnek. Az ütközési embermodellt nem csupán felszíni jellemzők írják le: csontszilárdság, bőr flexibilitás. A sérült testrészeket és a sérülés fokát is vizsgálják. A járműben utazókon kívül a járókelőket is vizsgálják már. Modellek fejlesztése valódi áldozatok eseteivel való összehasonlítással. Passzív biztonság tervezése a járműkarosszériában, a sérülést okozható elemek azonosítása, a módosítások hatásainak értékelése.

Toyota szimulációs rendszere: Total Human Model Safety (THUMS) Forrás: Toyota THUMS az emberi test precíz modellje, amely adatokat szolgáltat azokról a sérülésekről, amelyeket egy valóságos ember szenvedhet különböző típusú ütközéseknél