Nem kétértékű logika.

Slides:



Advertisements
Hasonló előadás
Készítette: Kunkli Zsóka Balásházy MGSZKI Debrecen,
Advertisements

5. A klasszikus logika kiterjesztése
Nem alethikus logika.
Matematika a filozófiában
Miről szól a Katégoriák? Cat.3: „Amikor valamit másvalamiről, mint alanyról állítunk, mindaz, amit az állítmányról mondunk, az alanyról is mondható. Pl.
Matematikai logika.
Az információ olyan új ismeret, amely megszerzőjének szükséges és érthető. Az adat az információ megjelenésének formája.  Az adat lehet: Szöveg Szám Logikai.
Legyenek az a és b egész számok.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar
Matematikai logika A diasorozat az Analízis 1. (Mozaik Kiadó 2005.) c. könyvhöz készült. Készítette: Dr. Ábrahám István.
Logika 3. Logikai műveletek Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 24.
Gyűrűk Definíció. Az (R, +, ·) algebrai struktúra gyűrű, ha + és · R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ·) félcsoport, és III.
Barwise-Etchemendy: Language, Proof and Logic
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Logika Érettségi követelmények:
Logikai műveletek
Szillogisztikus következtetések (deduktív következtetések)
Általános lélektan IV. 1. Nyelv és Gondolkodás.
C A C nyelv utasításai.
A SAT probléma különböző reprezentációinak vizsgálata oktatási szempontból (újratöltve) Az általánosítás fegyvere a kutatásban Kusper Gábor,
Logika 5. Logikai állítások Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 10.
Logika 7. A klasszikus logika kiterjesztése Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 24.
Logika 9. Deviáns logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék április 14.
Fuzzy rendszerek mérnöki megközelítésben I
Az érvelés.
Bevezetés a matematikába I
Halmazelmélet és matematikai logika
Halmazok Összefoglalás.
Bekő Éva Eötvös Loránd Tudományegyetem Elérhetőségem:
Összefoglaló. Valós világ Formális Modell –Sintaktikusan ellenőrizhető modell.
1. Bevezetés a tárgy célja: azoknak az eszközöknek és módszereknek a megismertetése és begyakoroltatása, melyek az érvelések megértéséhez, elemzéséhez,
Természetes és formális nyelvek Jellemzők, szintaxis definiálása, Montague, extenzió - intenzió, kategóriákon alapuló gramatika, alkalmazások.
Boole-algebra (formális logika).
A számítógép működésének alapjai
Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 17.
Logika 4. Logikai összefüggések Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 3.
2. A logika története Gregor Reisch  1503  Typus logice Premissae
Logikai műveletek.
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
I.7: „Világos az is, hogy mindegyik alakzatban, amikor nincs szillogizmus, és mindkettő állító, avagy tagadó, akkor egyáltalán semmi nem lesz szükségszerű.
Első Analitika I.1. Az állításelmélet újrafogalmazása „Protaszisz az a mondat, ami valamit valamiről állít vagy tagad.” „Lehet egyetemes, részleges (en.
Szillogisztika = logika (következtetéselmélet)? Az An.Post.-ban, és másutt is találunk olyan megjegyzéseket, hogy minden helyes következtetés szillogizmusok.
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
A kvantifikáció igazságfeltételei
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
A kondicionális törvényei
(nyelv-családhoz képest!!!
Vegyes kvantifikáció A kvantorcsere szerepe a Henkin-Hintikka játékban: l. Mixed Sentences, Kőnig’s World. Gyakorlás: 11.5 HF: 11.4, 11.9.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Logikai műveletek és áramkörök
Fordítás természetes nyelvről FOL-ra Kvantifikáló kifejezések: Néhány/Egy F   x( F(x)  …) Minden G   x( G(x)  …) Két H   x  y( H(x)  H(y)  …)
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Az informatika logikai alapjai
57. Az egyik:Ha Subidam vagyok, akkor ő Subidu. A másik:Ha ő Subidu, akkor én Subidam vagyok. Mit lehet ebből megtudni? 56. Az egyik: Ma hazudok, vagy.
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’
Valószínűségszámítás II.
Többdimenziós valószínűségi eloszlások
Tananyag: Barwise-Etchemendy: Language, Proof and Logic II. Quantifiers Weblap: Fogadóóra: H 15:30-17:00, i/226.
Kiterjesztések szemantikája: Szemantikai tartomány : Adatoknak, vagy értékeknek egy nem üres halmazát szemantikai tartománynak nevezzük. Jelölése: D. Egy.
Adalékok egy véges összegzési feladathoz
Logika.
Logika szeminárium Barwise-Etchemendy: Language, Proof and Logic
Fordítás (formalizálás, interpretáció)
A házi feladatokhoz: 1.5: Azonosság Jelölések a feladatszám alatt:
σωρεύω – felhalmoz, kupacot rak
Variációk a hazugra Szókratész: Platón hazudik.
Készítette: Kunkli Zsóka Balásházy MGSZKI Debrecen,
A piros sál a leghosszabb.
Előadás másolata:

Nem kétértékű logika

Az előzmény „Holnap lesz tengeri csata…” p  p  (p)  (p)

hamis = 0 igaz = 1  többértékű logikai rendszerek A különbség Klasszikus logika alapértékei: hamis – igaz Modális logika: a hamis/igaz értékeket megőrzi, ám modalizálja: szükségszerűen/esetlegesen hamis/igaz Többértékű logika: Elutasítja a modális logikát: nincs „szuperhamis”, nincs „szuperigaz” A hamis/igaz értékek között további értékek hamis = 0 igaz = 1  többértékű logikai rendszerek

Többértékű logika Alaptétel : lehetséges harmadik érték Igazságértékek  determinációs értékek Megőrzi a kétértékű logika minden törvényét, de ez fordítva már nem áll. Rendszerei : J. Łukasiewicz, 1920 Kleene, 1938, 1952 Többértékű logikai rendszerek is építhetőek, pl. négyértékű logika, amelynek egyik lehetséges kimunkálása a hamis/igaz értékek megduplázása a kétdimenziós idő (jelen/jövő) bevezetésével.

J. Łukasiewicz „Szabadulás az arisztotelészi logika mentális kényszerzubbonyából…” Jan Łukasiewicz, 1920 háromértékű logika determinált értékei: 0, 1  N (notwending: szükségszerű) indeterminált (neutrális) értéke: ½  M (möglich: lehetséges) lehetséges = a „harmadik érték” Igazságértékek  determinációs értékek

Háromértékű logika – Ł3 [p] jelölje p értékét, ekkor [p] = 1 – [p] [p & q] = a tagok értékei közül a kisebb [p V q] = a tagok értékei közül a nagyobb [p  q] = 0, ha [p] = 1 & [q] = 0; = ½, ha [p] > [q]; = 1, ha [p] ≤ [q]  1 ½ & 1 ½  1 ½  1 ½

Két- és háromértékű logika & 1 ½  1 ½  1 ½ & 1 ½  1 ½  1 ½

Pl.: Többértékű logika – Ł5 A „legigazabb” = 0 (!) A „leghamisabb” = 1 (!)  1 2 3 4 

S. C. Kleene A definiált jelentés nélküliség beemelése : egy összetett mondatnak akkor is lehet igazságértéke, ha egyes elemei nem rendelkeznek vele. Stephen C. Kleene, 1938 háromértékű logika definiált értékei: T (true ), F (false) definiálatlan értéke: I (indefinable) definiálatlan = a „harmadik érték” T = 1; F = 0; I = ½ értékkel helyettesítve a Łukasiewicz-féle igazságtáblákat kapjuk

Logikai négyzet Łukasiewicz Np : bizonyos, hogy p [Np] = 1 N(p) : bizonyos, hogy nem p [N(p)] = 0 Mp : lehetséges, hogy p Mp = Np [Mp] = ½ M(p) : lehetséges, hogy nem p M(p) = N(p) [M(p)] = ½

Életlen (fuzzy) logika Többértékű logika: diszkrét értékek (ún. élek) Végállapota: megszámlálhatatlan végtelen értékű logika  Fuzzy logika: infinitezimális változás, folytonosság A fuzzy logika is a 0 és az 1 közé helyezi el az igazságértékeket, de nem látja el azokat határozott értékkel – meghagyja bizonytalannak, homályosnak. Az értékek átmenete folyamatos és észrevétlen. A fuzzy logika nem tagadja a bivalenciát – csupán a multivalencia ritka szélső értékének tekinti. Felismerése szintén nem új keletű:

Fuzzy értékek 1. kicsi közepes nagy Híd a mesterséges nyelvek jól megformázottsága és a természetes nyelvek árnyaltsága között. „kopasz paradoxona”; „homokkupac paradoxona” (Eubulidész) kicsi közepes nagy

Fuzzy értékek 2. A kiinduló logikai négyzet „kiterítésével” : A „minden macska fekete” (A) és az „egyetlen macska sem fekete” (E) között : „némely macska fekete” (I) és „némely macska nem fekete” (O). A fuzzy logika alkalmazása az individuumokra :

Fuzzy értékek 3. Két alma esetén lehetséges, hogy egyik sem piros (00), mindkettő piros (11), az egyik piros, a másik nem (10), vagy fordítva (01). Az egyes almák azonban a piros és a zöld között vannak – vagyis a színek a négyszög belsejébe kerülnek.

Fuzzy értékek 4. Három alma esetén :

Például a JOGGYAKORLAT A joggyakorlat egyik sajátossága, hogy két értékre bűnös vagy ártatlan, pervesztes vagy pernyertes, igazat mond vagy hazudik, stb. igyekszik kifuttatni a több értékkel, átmenetekkel rendelkező jelenségeket. „Felismeri a vádlottat?” „Elismeri a bűnösségét?” „Szándékosan esett késedelembe?” „Előre látta a következményeket?” – „Válaszoljon igennel vagy nemmel!” A bizonytalanság, a hozzávetőlegesség nem irracionális és nem logikátlan.

Diszpozíciók A következtetések alapját a klasszikus logikában propozíciók (állítások) a fuzzy logikában diszpozíciók (többnyire, de nem szükségképpen igaz állítások) képezik. Pl.: „A svédek általában szőkék.” v : a szőkeség mértéke (az ‘általában’ helye) μ : a kifejezés nyelvi értéke (pl. egy svéd mennyire svéd)

Fuzzy kvantorok A diszpozíciókat fuzzy kvantorok (jelük: Q) kvantifikálnak : általában, néha,, többé-kevésbé stb. Az állítások minősítésének lehetőségei: Igazság minősítés „Nem egészen igaz, hogy Mary fiatal.” A minősített propozíció: „Mary fiatal”, a minősítő igazságérték: „Nem egészen igaz…”. Valószínűség minősítés „Valószínűtlen, hogy Mary fiatal.” Lehetőség-minősítés „Szinte lehetetlen, hogy Mary fiatal.” A minősítő értékek életlenek: életlen igazság, életlen valószínűség, életlen lehetőség.

{Q1(F  G), Q2(G  H)}  Q1  Q2 (F  H) Fuzzy szillogizmusok Fuzzy szillogizmus = a diszpozíciókból (kvantifikált állításokból) levont következtetés. A kvantifikáció a klasszikus logika következtetési sémát nem érinti. A fuzzy kvantorok egymáshoz való viszonyát szorzatukkal oldják fel. Kvantorok szorzatának jelölésére a  szimbólumot használjuk. „A legtöbb gyerek iskolás. Az iskolások több mint fele lány. Tehát a gyerekek többsége iskoláslány.” {Q1(F  G), Q2(G  H)}  Q1  Q2 (F  H)

Pl. a JOGGYAKORLAT Fuzzy vagylagosság : Több jogcímre alapozott követelés, a jogcímek egyike is elegendő volna, de külön-külön, önmagukban nem túl erősek. A legerősebb elem adja az értéket (a jogi doktrína álláspontja) vagy számolhatunk az egyes értékek összegével (joggyakorlat álláspontja)? Fuzzy „és-kapcsolat” : Különböző feltételeknek együttesen kell fennállniuk egy következtetés levonásához. A „leggyengébb láncszem” jelöli ki az egész kapcsolat értékét (jogi doktrína), vagy az elemek algebrai szorzata adja együttes értéküket (joggyakorlat)?