Az informatika logikai alapjai

Slides:



Advertisements
Hasonló előadás
Deduktív adatbázisok.
Advertisements

Predikátumok Dr. György Anna BMF-NIK Szoftvertechnológia Intézet.
Átváltás decimális számrendszerből bináris számrendszerbe.
Készítette: Kunkli Zsóka Balásházy MGSZKI Debrecen,
Lineáris egyenletrendszerek megoldása Gauss elimináció, Cramer-szabály Dr. Kovács Sándor DE GVK Gazdaságelemzési és Statiszikai Tanszék.
A matematikai logika alapfogalmai
Adatbázisrendszerek elméleti alapjai 2. előadás
Matematikai logika.
É: Pali is, Pista is jól sakkozik. T: Nem igaz. É: Bizonyítsd be. Mi nem igaz? T: Nem igaz, hogy Pali jól sakkozik. Nyertem É: Pali vagy Pista.
Determinisztikus programok. Szintaxis: X : Pvalt program változók E : Kifkifejezések B : Lkiflogikai kifejezések C : Utsutasítások.
Matematikai logika A diasorozat az Analízis 1. (Mozaik Kiadó 2005.) c. könyvhöz készült. Készítette: Dr. Ábrahám István.
1 Előhang Világunk dolgainak leírásához gyakran használunk kijelentő mondatokat. Pl. Minden anya szereti gyerekeit. Júlia anya és Júlia gyereke Máté. Következmény:
Készítette: Vadász Péter
Logika 3. Logikai műveletek Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 24.
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Kocsisné Dr. Szilágyi Gyöngyi
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Kocsisné Dr. Szilágyi Gyöngyi
Kocsisné Dr. Szilágyi Gyöngyi
Logika Érettségi követelmények:
Logikai műveletek
MI 2003/5 - 1 Tudásábrázolás (tudásreprezentáció) (know- ledge representation). Mondat. Reprezentá- ciós nyelv. Tudás fogalma (filozófia, pszichológia,
MI 2003/7 - 1 Az egyesítési algoritmus Minden kapitalista kizsákmányoló. Mr. Smith kapitalista. Mr. Smith kizsákmányoló.
Állapottér-reprezentáljunk!
Jt Java Kifejezések,precedencia. jt 2 Egy kifejezés operandusokból és operátorokból (műveletekből) áll. A kifejezésben szerepelhet egy vagy több operandus,
A SAT probléma különböző reprezentációinak vizsgálata oktatási szempontból (újratöltve) Az általánosítás fegyvere a kutatásban Kusper Gábor,
Matematikai logika alapjai
Differenciál számítás
dr Póder Margit f. docens Rendszer- és Szoftvertechnológia Tanszék
Véges értékű függvények
Halmazelmélet és matematikai logika
LOGIKA (LOGIC).
LOGIKA (LOGIC).
1 Boole-Algebrák. 2 más jelölések: ^ = *, &, П v = +, Σ ~ = ¬
Relációs algebra. A relációs adatbáziskezelő nyelvek lekérdező utasításai a relációs algebra műveleteit valósítják meg. A relációs algebra a relációkon.
Boole-algebra (formális logika).
Operátorok Értékadások
A számítógép működésének alapjai
Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 17.
Logikai műveletek.
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
A logika centrális fogalmai a kijelentéslogikában Propositional logic Nulladrendű logika Általában Logikai igazság Logikai ekvivalencia Logikai következmény.
(nyelv-családhoz képest!!!
Az informatika logikai alapjai
Az informatika logikai alapjai
Az informatika logikai alapjai
Az informatika logikai alapjai
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’
Az informatika logikai alapjai
Deduktiv adatbázisok. Normál adatbázisok: adat elemi adat SQL OLAP adatbázisok: adat statisztikai adat OLAP-SQL … GROUP BY CUBE(m1,m2,..)
1 Relációs kalkulusok Tartománykalkulus (DRC) Sorkalkulus (TRC) - deklaratív lekérdezőnyelvek - elsőrendű logikát használnak - relációs algebra kifejezhető.
2. gyakorlat INCK401 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2015/2016. I. félév AZ INFORMATIKA LOGIKAI ALAPJAI.
Az informatika logikai alapjai
Az informatika logikai alapjai
Logika.
Kifejezések C#-ban.
Analitikus fák kondicionálissal
Az informatika logikai alapjai
Kvantifikáló kifejezések a természetes nyelvben: ̒minden’, ̒némely’, ̒̒három’, stb. Ezek determinánsok, predikátumból (VP-ből) NP-t képeznek. Az elsőrendű.
Demonstrátorok: Sulyok Ági Tóth  István
Fordítás (formalizálás, interpretáció)
Lineáris egyenletrendszerek megoldása Gauss elimináció, Cramer-szabály Dr. Kovács Sándor DE GVK Gazdaságelemzési és Statiszikai Tanszék.
15. óra Logikai függvények
Programozás C# -ban Elágazások.
Érvelések (helyességének) cáfolata
Nulladrendű formulák átalakításai
Készítette: Kunkli Zsóka Balásházy MGSZKI Debrecen,
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
Gráfok - 1 Definíció: Irányított gráf (digráf) G=(V,E) rendezett pár.
Előadás másolata:

Az informatika logikai alapjai INCK401 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2013/2014. I. félév 7. gyakorlat

Formulák átalakításai zárójelelhagyási konvenciók normálformára hozások

Zárójelelhagyási konvenciók A konvenciók célja az egyértelmű olvashatóság fenntartása mellett a formulákban előforduló zárójelek számának a csökkentése. A létrejött jelsorozatok betű szerint nem formulák, de egyértelműen előállítható belőlük egy formula. Az egyszerűség kedvéért az így létrejött jelsorozatokat is formuláknak nevezzük, s használatukkor mindig a belőlük egyértelműen előállítható formulákra gondolunk.

Zárójelelhagyási konvenciók A legkülső zárójelpár mindig elhagyható. A kétargumentumú logikai konstansok elsőbbségi (precedencia) sorrendje: ∧,∨,⊃,≡ A negáció erősebb bármely kétargumentumú logikai konstansnál. Az azonos kétargumentumú logikai konstansok egymás közötti elsőbbségét a balról jobbra szabály rendezi: először mindig a bal oldali formulát tekintjük külön műveleti komponensnek.

Megjegyzések Az utolsó szabály a következőképpen is megfogalmazható: azonos kétargumentumú logikai konstansok esetén balról az első a formula fő műveleti jele. Az utolsó szabálynak csak az implikációnál van valódi jelentősége: az A⊃B⊃C 'formula' egyértelműen zárójelezett alakja: (A⊃(B⊃C)); A konjunkció, a diszjunkció és a (materiális) ekvivalencia esetében a műveltek asszociativitása miatt a szabályt nem követő zárójelezések is logikailag ekvivalens formulát eredményeznek. Pl.: az A∧B∧C 'formula' egyértelműen zárójelezett alakja: (A∧(B∧C)), de ez logikailag ekvivalens az ((A∧B)∧C) formulával.

Normálformák literál elemi konjunkció elemi diszjunkció diszjunktív normálforma konjunktív normálforma normálforma tétel

Példa Hagyjuk el az alábbi nulladrendű formulából a felesleges zárójeleket! ((s ∧ p) ∨ ((¬p ∧ s) ≡ t)) Megoldás: - a legkülső zárójelpár mindig elhagyható: (s ∧ p) ∨ ((¬p ∧ s) ≡ t) - a belső zárójeleket figyelembe véve az erősebb művelet (∧) van zárójelezve, ezért elhagyható a hozzá tartozó zárójelpár: (s ∧ p) ∨ (¬p ∧ s ≡ t) - az első zárójelpár elhagyható, mert a konjukció erősebb, mint a diszjunkció: s ∧ p ∨ (¬p ∧ s ≡ t) - az utolsó zárójel nem hagyható el, mert ez az ekvivalencia zárójele, amely a leggyengébb, s így gyengébb, mint a diszjunkció

Példa Az alábbiak közül, melyik a p ∧ q ∨ r ∧ ¬p ⊃ s formula teljesen zárójelezett alakja? (p ∧ (q ∨ r) ∧ ¬p ⊃ s) ((p ∧ q) ∨ (r ∧ (¬p ⊃ s))) (p ∧ ((q ∨ r) ∧ ¬(p ⊃ s))) (((p ∧ q) ∨ (r ∧ ¬p)) ⊃ s) Amelyik nem az, az miért nem az?

Literál Ha p∈Con, akkor a p,¬p formulákat literálnak nevezzük. Legyen L(0)=〈LC, Con, Form〉 egy nulladrendű nyelv. Ha p∈Con, akkor a p,¬p formulákat literálnak nevezzük. A p,¬p literálok esetén a p paramétert a literál alapjának nevezzük. Példák: A, ¬A, B, ¬B, ….

Elemi konjunkció Legyen L(0)=〈LC, Con, Form〉 egy nulladrendű nyelv. Ha az A∈Form formula literál vagy különböző alapú literálok konjunkciója, akkor A-t elemi konjunkciónak nevezzük. Példák: A, ¬A, B, ¬B, … (A∧B), (¬A∧B), (¬A∧¬B),… ((A∧B)∧¬A),…

Diszjunktív normálforma Egy elemi konjunkciót vagy elemi konjunkciók diszjunkcióját diszjunktív normálformának nevezzük. Példák: (¬A∧B), ¬A, (A∧B),... (A∨(B∨C)),… ((¬A∨B)∨¬A), ((¬A∨B)∨A), ((A∨B)∨¬A),…

DNF – KDNF (kitüntetett) átalakítással igazságtáblával – (kitüntetett DNF) elkészítjük a formula igazságtábláját kiválasztjuk azokat az interpretációkat, amelyek szerint a formula igaz minden ilyen sorhoz készítünk egy olyan elemi konjunkciót, amely tartalmazza a formulában előforduló atomi formulákat igaz az adott interpretáció szerint az elemi konjunkciókat diszjunkciózzuk

Elemi diszjunkció Legyen L(0)=〈LC, Con, Form〉 egy nulladrendű nyelv. Ha az A∈Form formula literál vagy különböző alapú literálok diszjunkciója, akkor A-t elemi diszjunkciónak nevezzük. Példák: A, ¬A, B, ¬B, … (A∨B), (¬A∨B), (¬A∨¬B),… ((A∧B)∨¬A),…

Konjunktív normálforma Egy elemi diszjunkciót vagy elemi diszjunkciók konjunkcióját konjunktív normálformának nevezzük. Példák: (¬A∨B), ¬A, (A∨B),… (A∧(B∧C)),… ((¬A∨B)∧¬A), ((¬A∨B)∧A), ((A∨B)∧¬A),…

KNF – KKNF (kitüntetett) átalakítással igazságtáblával – (kitüntetett DNF) elkészítjük a formula igazságtábláját kiválasztjuk azokat az interpretációkat, amelyek szerint a formula hamis minden ilyen sorhoz készítünk egy olyan elemi diszjunkciót, amely tartalmazza a formulában előforduló atomi formulákat hamis az adott interpretáció szerint az elemi diszjunkciókat konjunkciózzuk

Segédletek logikából Dr. Várterész Magda: Dr. Mihálydeák Tamás: http://www.inf.unideb.hu/~mihalydeak/Logika_html_2011_11_15.zip http://www.inf.unideb.hu/~mihalydeak/Logika_my_twt-treeview.html http://www.inf.unideb.hu/~mihalydeak/Inf_log_ea_06_07_1.pdf Dr. Várterész Magda: http://www.inf.unideb.hu/~varteres/logika/Logikafo.pdf http://www.inf.unideb.hu/~varteres/logika_peldatar/matlog.pdf http://www.inf.unideb.hu/~varteres/logika_peldatar/megoldas.pdf Lengyel Zoltán: http://www.inf.unideb.hu/~lengyelz/docs/logika.pdf