AZ MHC MOLEKULÁK BIOLÓGIAI FUNKCIÓJA. THE STRUCTURE OF MHC GENE PRODUCTS 33  2m 22 11 11 22 22 11  1  2  3  1  2  1  2  3 and 

Slides:



Advertisements
Hasonló előadás
T-SEJT AKTIVÁCIÓ.
Advertisements

A T-SEJTEK ANTIGÉNFELISMERÉSÉNEK ALAPJAI I.1. A T-limfociták antigént felismerő működésének sajátosságai  A T-limfociták a fehérjeantigénekből az antigénprezentáció.
T-SEJT DIFFERENCIÁCIÓ A THYMUSBAN
T-SEJT DIFFERENCIÁCIÓ A THYMUSBAN
AZ MHC FUNKCIÓI KLASSZIKUS MHC GÉN TERMÉKEK NEM KLASSZIKUS MHC GÉNEK
T – SEJT EFEKTOR FUNKCIÓK
A T sejtek ontogenezise III. Matkó János,
Strukturális genomika Gyakorlati feladatok. SNP-k és vizsgálatuk Mi az SNP?
ANTIGÉNTŐL FÜGGŐ FOLYAMATOK
SZERZETT IMMUNITÁS FELISMERÉS.
C mIg H mIg L TCR  TCR  T-SEJT  C V Antigén receptor TCR A B- ÉS T-SEJTEK ANTIGÉN FELISMERŐ RECEPTORAI HASONLÓ SZERKEZETŰEK TCR =  +  A.
EFFEKTOR T LIMFOCITÁK Az effektor T sejtek citokineket és citotoxinokat termelnek Az effektor T sejtek aktiválják az antigén prezentáló sejteket.
ANTIGÉN PREZENTÁCIÓ T – SEJT FELISMERÉS T – SEJT AKTIVÁCIÓ T – SEJT EFEKTOR FUNKCIÓK.
Az immunoglobulin szerkezete
A FŐ HISZTOKOMPATIBILITÁSI KOMPLEX ÉS AZ ANTIGÉNPREZENTÁCIÓ
KOMPLEMENT RENDSZER.
Genetikai, Sejt- és Immunbiológiai Intézet
Falus András Genetikai, Sejt- és Immunbiológiai Intézet
Transzplantációs immunológia
Dr. Falus András egyetemi tanár B lymphocyták (ontogenezis, aktiváció, osztály/izotípus, humorális immunitás)
Antigén receptorok Antitest, T sejt receptor A repertoire (sokféleség) kialakulása Genetikai, Sejt- és Immunbiológiai Intézet Falus András.
Készítette: Weisz Lívia és Rácz Rita
Dr. Falus András egyetemi tanár Genetikai, Sejt- és Immunbiológiai Intézet Semmelweis Egyetem Általános Orvostudományi Kar Antigénfelismerő receptorok.
A FŐ HISZTOKOMPATIBILITÁSI KOMPLEX ÉS AZ ANTIGÉNPREZENTÁCIÓ
Antigénbemutató sejtek, antigénfeldolgozás és antigénbemutatás
T-sejt aktiváció.
A KÖZPONTI TOLERANCIA A CSONTVELŐBEN ÉS A TÍMUSZBAN ALAKUL KI
MHC Major histocompatibility complex. A T-SEJTEK MHC MOLEKULÁKAT HORDOZÓ ANTIGÉN PREZENTÁLÓ SEJTEK JELENLÉTÉBEN A SEJTFELSZÍNEN MEGJELENŐ ANTIGÉN EREDETŰ.
A HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEK
10 millió baci a kezed minden centiméterén
Az MHC polimorfizmusa (Major histocompatibility complex) Polimorf gén--- több változat (allél) előfordulása az adott génszakaszon (lokuszon) Az MHC a legpolimorfabb.
Sejtfelszíni MHC-peptid komplex
! ! OPSZONIZÁLÁS Megkönnyíti a patogén felismerését a természetes immunrendszer sejteinek Befolyásolja a válaszreakciót. OPSZONINNAL OPSZONIN NÉLKÜL Legfőbb.
Elsődleges (központi) és másodlagos (perifériás) nyirokszervek:
T-SEJTEK FEJLŐDÉSE ÉS DIFFERENCIÁCIÓJA.
SZERZETT IMMUNITÁS FELISMERÉS. DC Epitél sejtek PERIFÉRIÁS LIMFOID SZERVEK PERIFÉRIÁS SZÖVETEK SEJTEK KÖZÖTTI SZÖVET SPECIFIKUS KOMMUNIKÁCIÓS HÁLÓZATOK.
C mIg H mIg L TCR  TCR  T-SEJT  C V Antigén receptor TCR A B- ÉS T-SEJTEK ANTIGÉN FELISMERŐ RECEPTORAI HASONLÓ SZERKEZETŰEK TCR =  +  A.
B SEJT DIFFERENCIÁCIÓ A CSONTVELŐBEN
Az Immunválasz negatív szabályozása. AZ IMMUNVÁLASZ NEGATÍV SZABÁLYOZÁSA Naiv limfociták Az antigén-specifikus sejtek száma Elsődleges effektorok Másodlagos.
ANTIGÉN-SPECIFIKUS T – SEJT AKTIVÁCIÓ
AZ INTRACELLULÁRIS BAKTÉRIUMOK ELLENI IMMUNVÁLASZ
ANTIGÉN-SPECIFIKUS T – SEJT AKTIVÁCIÓ RÉSZTVEVŐK Antigénből származó peptideket bemutató sejt A T limfocita készletből szelektált peptid-specifikus T sejt.
1.A veleszületett immunitás sejtjeinek aktiválását követő folyamatok (fagocitózis, citokin/kemokin termelés, enzim aktiváció) 2.A szerzett immunitás sejtjeinek.
AZ MHC RÉGIÓ ÁLTAL KÓDOLT GÉNEK ÉS FEHÉRJÉK SZERKEZETE.
A tumorok és az immunrendszer kapcsolata
AZ MHC MOLEKULÁK BIOLÓGIAI FUNKCIÓJA
A BAKTÉRIUMOK ELLENI IMMUNVÁLASZ
A HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEK
EFFEKTOR T LIMFOCITÁK Az effektor T sejtek citokineket és citotoxinokat termelnek Az effektor T sejtek aktiválják az antigén prezentáló sejteket.
Autoimmun betegségek.
SZERZETT IMMUNITÁS FELISMERÉS.
AZ MHC RÉGIÓ ÁLTAL KÓDOLT
23-mer 12-mer A közbeeső DNS hurok kivágódik A heptamerek és nonamerek visszafelé illeszkednek Az RSS által kialakított alakzat a rekombinázok célpontja.
MHC.
Hogyan képes a B sejt csak egyfajta könnyű és egyfajta nehéz láncot kifejezni? –Annak ellenére, hogy minden B sejtben egy apai és egy anyai Ig lókusz is.
AZ ADAPTÍV IMMUNVÁLASZ: T- és B-sejtek aktivációja
Az exogén és endogén antigének bemutatása
T-SEJT DIFFERENCIÁCIÓ A THYMUSBAN. A thymus szöveti felépítése.
Immunbiológia - II. A T sejt receptor (TCR) heterodimer CITOSZÓL EXTRACELLULÁRIS TÉR SEJTMEMBRÁN kötőhely  lánc  lánc VV VV CC CC VV VV
Tumorimmunitás, transzplantáció Falus András. protoonkogének tumor szuppresszor gének egészséges állapot.
Elsődleges (központi) és másodlagos (perifériás) nyirokszervek:
Monocit a/makro fág DCHízó Sejt Granu Locita NK sejtB-sejtT-sejtKomp lement Felis merés kommu nikáció Effektor funkció.
PLAZMA SEJT ANTIGÉN CITOKINEK B-SEJT A B – SEJT DIFFERENCIÁCIÓT A T-SEJTEK SEGÍTIK IZOTÍPUS VÁLTÁS ÉS AFFINITÁS ÉRÉS CSAK T-SEJT SEGÍTSÉGGEL MEGY VÉGBE.
ANTIGÉN-SPECIFIKUS T – SEJT AKTIVÁCIÓ RÉSZTVEVŐK Antigénből származó peptideket bemutató sejt A T limfocita készletből szelektált peptid-specifikus T sejt.
A T limfociták Falus András Genetikai, Sejt- és Immunbiológiai Intézet.
ANTIGÉN PREZENTÁCIÓ.
AZ MHC RÉGIÓ ÁLTAL KÓDOLT GÉNEK ÉS FEHÉRJÉK. AZ IMMUNOGLOBULIN SZUPERGÉN CSALÁD TAGJAI FUNKCIÓ FELISMERÉS Ig, TCR, MHC-I, MHC-II ADHÉZIÓ ICAM-1, ICAM-2,
Tímusz Lép Csontvelő Nyirokcsomó Madulák Féregnyúlvány Elsődleges (központi) és másodlagos (perifériás) nyirokszervek: Az elsődleges nyirokszervek az immunrendszer.
Antigén receptorok Keletkezésük, a sokféleség kialakulása
TRANSZPLANTÁCIÓS IMMUNOLÓGIA I.
Előadás másolata:

AZ MHC MOLEKULÁK BIOLÓGIAI FUNKCIÓJA

THE STRUCTURE OF MHC GENE PRODUCTS 33  2m 22 11 11 22 22 11  1  2  3  1  2  1  2  3 and  2m Ig supergene family  2 and  2

AZ MHC KORLÁTOZÁS JELENSÉGE Egy adott T-sejt receptor egy adott MHC – peptid komplex felismerésére képes Ha a peptid egy másik MHC molekulához kötődik, a T-sejt felismerés nem jön létre Ha ugyanaz az MHC egy másik peptidet köt, a T-sejt felismerés nem jön létre

PEPTID 11 33 22 2m2m AZ I TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE MINDEN MAGVAS SEJTEN KIFEJEZŐDIK

22 11 22 11 PEPTID PEPTIDE A HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEKEN JELENIK MEG MÁS SEJTEKEN IS INDUKÁLHATÓ (endotél, mikroglia, asztocita) AZ II TÍPUSÚ MHC MOLEKULA TÉRSZERKEZETE

AZ I TÍPUSÚ MHC MOLEKULA PEPTID KÖTŐ HELYE

PEPTID AZ II TÍPUSÚ MHC MOLEKULA PEPTID KÖTŐ HELYE

11 33 22 2m2m 22 11 22 11 Az allélikus polimorfizmus a peptid kötő helyre koncentrálódik Az MHC polimorfizmus befolyásolja a peptid kötő képességet Az allelikus vairánsok 20 aminosavban is eltérhetnek Class II (HLA-DR) Class I

Az MHC-I molekula 8-10 aminosav hosszúságú peptideket köt A PEPTIDKÖTŐ HELY GEOMETRIÁJA  m  -lánc Peptid  -lánc  -lánc Peptid Az MHC-II molekula >13 aminosav hosszúságú peptideket köt

DPB1*01011 TAC GCG CGC TTC GAC AGC GAC GTG GGG GAG TTC CGG GCG GTG ACG GAG CTG GGG CGG CCT GCT GCG GAG TAC TGG AAC AGC CAG AAG GAC ATC CTG GAG GAG DPB1* A DPB1* T- -T A- -A DPB1* T- -T AC -A DPB1*0202 CT- -T AG DPB1*0301 -T- -T A- -A- --C C DPB1*0401 -T DPB1*0402 -T- -T A- -A DPB1*0501 CT- -T AG DPB1*0601 -T- -T A- -A- --C C DPB1*0801 -T- -T A- -A DPB1*0901 -T- -T A- -A- --C DPB1*1001 -T- -T A- -A DPB1* A C DPB1* A C DPB1* DPB1*1401 -T- -T A- -A- --C C DPB1* A C DPB1*1601 -T- -T A- -A DPB1*1701 -T- -T A- -A- --C DPB1*1801 -T- -T A- -A DPB1*1901 -T- -T AG DPB1* T- -T A- -A- --C C DPB1* T- -T A- -A- --C C DPB1*2101 CT- -T AG DPB1*2201 CT- -T AG DPB1*2301 -T- -T DPB1*2401 -T AG DPB1*2501 -T- -T A- -A C DPB1* A DPB1* HLA-DP  allél szekvenciája a 204 és 290 nukleotidok (35-68 aminosavak) közötti szakaszon A polimorfizmus a legtöbb esetben pont mutáció következménye Y-F A-V Silent A-D A-E E-A I-L A polimorf nukleotidok a peptidkötő helyhez tartoznak

A PEPTIDKÖTŐ HELY SZERKEZETE P2 és P9 nagy hidrofób zsebbe illeszkednek A „törzs” régió aminosav oldalláncai egyenletesen elosztott zsebekbe illeszkednek

A peptidek leoldhatók az MHC molekulákról Savval eluált peptidek Stabil MHC-peptid komplexek izolálása Peptid szeparálás és szekvenálás „üres” MHC molekulák

Az MHC molekulákról leoldott peptidek eltérő szekvenciákkal rendelkeznek de közös motívumokat tartalmaznak Egy adott MHC I molekulához kötődő peptidek állandó aminosav mintázatot mutatnak PEIYSFH I AVTYKQT L PSAYSIK I RTRYTQLV NC Nem azonosak de hasonlók Y & F aromás V, L & I hidrofób A horgonyzó aminosavak oldalláncai a zsebekbe illeszkednek SIIFNEKL APGYNPAL RGYYVQQL Az eltérő MHC molekulák különböző konzervált aminosav mintázattal rendelkező peptideket képesek megkötni A közös szekvencia részlet a MOTIF A sok peptidre jellemző közös aminosavak illeszkednek az MHC molekula szerkezetéhez HORGONYZÓ AMINOSAVAK

AZ MHC MOLEKULÁK SAJÁT VAGY ANTIGÉN EREDETŰ PEPTIDEKET KÖTVE JELENNEK MEG A SEJTFELSZÍNEN B-sejt, makrofág, dendritikus sejt Vese epitél sejt Máj sejt Bemutatják a sejt belső környezetét Bemutatják a sejt belső és külső környezetét I. típusú MHC A citoszólból és a sejtmagból származó adott méretű peptidek II. típusú MHC Membrán fehérjékből és az MHC molekulákból (70%) származó peptidek

AZ MHC ALLOTÍPUSOK KOMBINÁCIÓJA A POPULÁCIÓBAN ÉS AZ EGYEDBEN 1. EGYED 2. EGYED * * *

Mi az előnye az MHC típusok sokféleségének? A patogén mikroorganizmusok osztódása lényegesen gyorsabb, mint az emberi reprodukció Adott idő alatt a patogén gének sokkal gyakrabban mutálódnak, mint az emberi gének és ezáltal gyakran kikerülhetik az MHC gének változásait Az MHC típusok száma korlátozott A patogének flexibilitásával szemben A populációban minden MHC típus sok variánst hoz létre Ezek a variánsok nem feltétlenül nyújtanak védelmet minden egyed számára, de védik a populációt a kihalástól

A FERTŐZÉSEK KIMENETELE EGY ÉS TÖBB POLIMORF MHC GÉN ESETÉN v Példa: Ha csak egyféle MHC molekula (MHC X) lenne a populációban A populációt a kihalás fenyegetné A patogén kikerüli az MHC X általi felismerést MHC XX Többféle MHC-Gén v v v v v v v v v v v v vvv v v v v v v v v v A populáció védett V – vírus fertőzés által okozott kár

AZ MHC FUNKCIÓI KLASSZIKUS MHC GÉN TERMÉKEK –Saját fehérjékből származó peptidek prezentálása – immunológiai saját folyamatos megjelenítése –Az immunológiai saját meghatározása Saját MHC + saját peptid – egyedekként változó MHC és saját peptid –Antigénből származó peptidek prezentálása – idegen/megváltozott saját felismerése –Az immunológiailag idegen meghatározása Saját MHC + idegen peptid – egyedekként változó MHC és idegen peptid –Allogén válasz idegen MHC-val szembeni válasz (transzplantáció) Az MHC által korlátozott T-sejt felismerés következménye –A T-limfociták differenciációja és szelekciója a tímuszban –A T-limfociták életben tartása a periférián –Az NK sejt felismerés célpontja NEM KLASSZIKUS MHC GÉNEK –Specializált funkciók A KLASSZIKUS MHC GÉNEKKEL SZERKEZETI ROKONSÁGOT MUTATÓ FEHÉRJÉK

Klasszikus MHC gének POLIMORF HLA – Human Leukocyte Antigen rendszer HLA –A,B, C I osztály MINDEN MAGVAS SEJTEN HLA – DR, DP, DQII osztály HIVATÁSOS ANTIGÉN PREZENTÁLÓ SEJTEKEN Nem- klasszikus MHC gének E, G, F 6 kromoszóma rövid karjaMHC 15 kromoszóma  2m AZ MHC GÉNEK ELHELYEZKEDÉSE III osztály

AZ MHC EGYÉB GÉNJEI (nem klasszikus) nem polimorf Ib MHC gének I típusú,  2 mikroglobulinnal asszociált MHC szerű molekulák Korlátozott szöveti kifejeződés HLA-G trofoblaszt, kapcsolódik a CD94 NK-sejt receptorhoz, gátolja a magzat és tumorok NK-sejt általi pusztítását HLA-E bizonyos sejtek membránján, HLA-A, B, C gének szignál szekvenciáját köti, kapcsolódik a CD94 NK-sejt receptorhoz HLA-F magzati máj, eozinofil felszín, ismeretlen funkció MHC II régió Az antigén feldolgozásban szereplő géneket kódolnak HLA-DM  HLA-DO  hivatásos APC-ben Proteaszóma komponensek (LMP-2 és 7), peptid transzporterek (TAP-1 és 2) Sok pseudogén MHC III régió Komplement fehérjék kódolása C4A és C4B, C2 és B FAKTOR TUMOR NEKRÓZIS FAKTOR-  Immunológiailag irreleváns gének 21-hidroxiláz, RNA helikáz, kazein kináz hősokk fehérje 70, szialidáz