Stresszfiziológia.

Slides:



Advertisements
Hasonló előadás
Hőpréselés alatt lezajló folyamatok •A kompozit alkotóelemei z irányban végleges helyükre kerülnek; Mi történik?
Advertisements

Hőmérsékleti stresszek, szárazságstressz
ANYAGCSERE CSONTBETEGSÉGEK Semmelweis Egyetem I. Belklinika.
Az éghajlatváltozás problémája egy fizikus szemszögéből Geresdi István egyetemi tanár Pécsi Tudományegyetem Természettudományi Kar.
Fehérjék biológiai jelentősége és az enzimek
ENZIMOLÓGIA 2010.
Az ásványi anyagok forgalma
Vízminőségi jellemzők
Aminosavak bioszintézise
Szénvegyületek forrása
Mik azok a fehérjék? A fehérjék aminosavak lineáris polimereiből felépülő szerves makromolekulák. Ezek kialakításában 20 féle aminosav vesz részt.
Készítette: Angyalné Kovács Anikó
A membrántranszport molekuláris mechanizmusai
2. A víz felvétele és transzportja, transzspiráció.
A floem transzport Malpighi, gyűrűzés.
A belső és a külső erők párharca
Készítette: Kálna Gabriella
Veszteséges áramlás (Navier-Stokes egyenlet)
A levegőburok anyaga, szerkezete
BIOKÉMIA I..
FOTOSZINTETIKUS PIGMENTEK
Sav bázis egyensúlyok vizes oldatban
A hőmérsékleti stresszek
Stresszfiziológia Növények és a stressz.
Növények és a stressz Készítette: Demeter Ibolya III. biológia-kémia
A szervezet energiaforgalma
A szappanok káros hatásai
Zsírsavak szintézise: bevezető
Az intermedier anyagcsere alapjai 3.
Az intermedier anyagcsere alapjai 9.
Glutamat neurotranszmitter
A tengerszint változásai Az eusztázia
Szabályozás-vezérlés
Lizoszóma Enzimek Membrán proteinek Transzport molekulák a membránban
Készítette: Kiss László
Az esszenciális mikroelemek jelentősége
Az anaerob rothasztók ellenőrzése és biokémiai jellemzése
PROGRAMOZOTT SEJTHALÁL
A növények egyedfejlődése
A víz.
TALAJ KÉMIAI TULAJDONSÁGAI
Talajsterilezés Herman Edit. Sterilitás definíciója Külső behatás következtében kialakuló olyan állapot, amiben a vizsgált terület teljesen mikroba-mentes.
Gyakorlati alkalmazás Biológiai felmérés és monitoring.
A légzés fogalma és jelentősége
Fotoszintézis 1. A fotoszintézis lényege és jelentősége
Vízszennyezés.
A szervezet energiaforgalma
Trópusi sivatagok.
Balázs Csaba dr. Budai Irgalmasrendi Kórház
Szerveződési szintek, élettelen környezeti tényezők
Szavannák.
Az állati termelés táplálóanyag szükséglete a. Növekedés hústermelés A fejlődés, növekedés során eltérő az egyes szövetek aránya, az állati test kémiai.
Füves puszták.
LÉGSZENNYEZŐ ANYAGOK OKOZTA STRESSZ. ÁLTALÁNOS TÜNETEK.
A szervezet energiaforgalma
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
FOTOSZINTETIKUS PIGMENTEK a tilakoid-membránok lipid-fázisának kb. felét pigmentek teszik ki a többi galaktolipid és foszfolipid kettősréteg (erősen telítetlen.
A fehérjék biológiai jelentősége, felépítése, tulajdonságai Amiláz molekula három dimenziós ábrája.
TÁPLÁLOKOK, TÁPANYAGOK
Hormonokról általában Hormonhatás mechanizmusa
2. Táplálkozástani Alapfogalmak és Koncepciók
Fotoszintézis 1. A fotoszintézis lényege és jelentősége
Szabályozás-vezérlés
ENZIMOLÓGIA.
A szervezet energiaforgalma
A VÍZ, MINT ÖKOLÓGIAI TÉNYEZŐ
Vadállomány egészségvédelme
Híg oldatok tulajdonságai
OLDATOK.
Híg oldatok tulajdonságai
Előadás másolata:

Stresszfiziológia

A fizikai stresszkoncepció alkalmazása növényekre J. Lewitt: Responses of Plants to Environmental Stresses (1972.) A stressz fizikai értelmezése: - Newton mozgástörvényei alapján Erő-ellenerő, akció-reakció - Stressz (erő/felület) Strain, hatás egy testre: deformáció (alakváltozás) - Stressz / deformáció= M (elaszticitási modulus) Elasztikus deformáció: reverzibilis Plasztikus deformáció: irreverzibilis

A stressz anyagcsere terhelés A stressz biológiai értelmezése a fizikai analógiájaként: - Külső faktor (stresszor) hatása az organizmusra (erő, nyomás, pH a saját mértékegységeivel) - Deformáció: bármilyen fizikai vagy kémiai változás Elasztikus változás : reverzibilis Plasztikus változás: irreverzibilis - Elaszticitási modulus: intenzitás/mennyiségi változás Plaszticitási modulus: intenzitás/standard irreverzibilis változás - Növényi rendszerben a plasztikus deformáció reparálható. - Az élő szervezet adaptálódhat. - Időfaktor. - Specifikus és aspecifikus reakciók.

Az általános adaptációs szindróma Selye János: The Stress of Life (1956) Életünk és a stressz (Bp. Akadémiai Kiadó, 1966) Stressz: fajlagos tünetcsoportban megnyilvánuló állapot, mely magában foglal minden nem-fajlagosan előidézett elváltozást. Stresszor: bármely faktor, amely a stresszt okozza

Selye János (1936., 1956.) A stressz a szervezet túlterhelt, túlerőltetett állapota, a test aspecifikus reakciója mindenfajta igénybevétellel szemben. Larcher (1987.) A stressz egy olyan terheléses állapot, amelyben a növénnyel szembeni fokozott igénybevétel a funkciók kezdeti destabilizációját követően egy normalizálódáson át az ellenállóság fokozódásához vezet, majd a tűréshatár túllépésekor tartós károsodást vagy akár pusztulást is okoz.

Az általános adaptációs szindróma alkalmazása növényekre

A növényi stresszorok Természeti Biotikus Antropogén erős fény baktériumok légszennyezők szárazság gombák savas esők hőség vírusok nehézfémek UV-A, UV-B rovarok herbicidek sebzés, növényevő állatok alacsony hőmérséklet tápanyaghiány

Külső szignál Anyagcsereválasz Génexpresszió szignálpercepció szignáltranszdukció Anyagcsereválasz Génexpresszió Anyagcsere fluxusok újraállítása, új egyensúlyok, stresszhormonok szintézise Stresszproteinek, kompatibilis ozmotikumok, növényi antibiotikumok szintézise

Akklimatizáció (a.) és adaptáció (b.) a./ Nagy fenotípusos plaszticitású fajok: a növény tud akklimatizálódni az egyedfejlődés folyamán jelentkező stresszhatásokhoz b./ Kis fenotípusos plaszticitású fajok: a növény az erőteljes stresszhatásra elpusztulhat, és csak egyes (megfelelő genotípusú) egyedek élik túl a stresszt: szelekció nemzedékek során

Széles fenotípusos plaszticitású növény: az Arabidopsis válasza hidegstresszre

A vízhiány

A szárazságtűrés mechanizmusai A vízpotenciál csökkenésének megelőzése ( a szövetek hidratáltságának fenntartása szárazságstressz alatt) A vízvesztés minimálisra csökkentése A vízfelvétel fenntartása (vízpazarlók) Az alacsony vízpotenciál tolerálása A száraz időszak elkerülése: rövid tenyészidő

1. típus: A deszikkációt elkerülő stratégia A./ Fa alakú kaktusz Galapagoszról; B./ Fű fa Ausztráliából

1. típus: A növények egy része állandó vízpotenciál mellett éli át a száraz periódust: a növény mindenáron vízhez jut, vízpazarló stratégia C./ Statice gmelini (sós talajon), Prosopis (sivatagban)

Prosopis glandulosa

Kontroll Szárazságstressznek kitett 2. típus: a növények szárazság hatására elvesztik eredeti vízpotenciáljukat, elviselik az alacsony vízpotenciál értéket, majd akklimatizálódnak hozzá

3. típus: A stresszor, a szárazság elkerülése: (escape), felgyorsult, vízhez kötött életciklus, efemer sivatagi növények

A szárazság hatására bekövetkező válaszok sorozata: Korai válasz, első védelmi vonal: a sztómazáródás és a levélfelület csökkenése Második védelmi vonal: fokozott gyökérnövekedés Metabolikus és hormonális változások. Az abszcizinsav szintézisének fokozódását követően a hormon által indukált és egyéb génexpressziós változások jelentik a harmadik védelmi vonalat (kompatibilis ozmotikumok, prolin, glicin betain, mannitol szintézise, védőfehérjék, LEA proteinek szintézise).

Első védelmi vonal: a levélfelület csökkenése Y tengely: a levélfelület növekedési sebessége Vízstressz nélkül Vízstresszelt növény GR=növekedési sebesség, m=sejtfal extenzibilitás, ψp=turgornyomás, Y=küszöbturgor

A lokális és az általános adaptációs szindróma növényeknél ABS száraz öntözött

Első védelmi vonal: a levélfelület csökkenése és sztómazáródás 1. A fény hatására a sztróma lúgosodik 3. A disszociálatlan ABSH szabadon kidiffundál a plasztiszból a citoszolba 2. Az lúgos kémhatású sztrómában az ABSH disszociál 4. Az ABS- anionra a membrán impermeábilis Hidropasszív sztómazáródás: követi a vízvesztést; Hidroaktív sztómazáródás: hormonok (ABS; indolecetsav) és egyéb tényezők által szabályozott

Szabályozó faktorok: Nyit → fény (elsősorban a kék hullámhossz tartomány), kis széndioxid koncentráció, átlagos hőmérséklet, elegendő víz, indolecetsav hormon Zár → sötétség , nagy széndioxid koncentráció, szélsőséges hőmérséklet, vízhiány, abszcizinsav hormon

Harmadik védelmi vonal, metabolikus és génexpressziós változások: a fotoszintézis a levélfelület csökkenését követően jóval később, kisebb vízpotenciálnál csökken

Harmadik védelmi vonal, metabolikus és génexpressziós változások: a floémtranszport még kevésbé érzékeny a vízpotenciál csökkenésre

A szárazság és az abszcizinsav-indukált génexpressziós változások Kompatibilis ozmotikumok szintézisének kulcsenzimei pl. prolinbioszintézis, Δ1-pirrolin-5-karboxilát szintáz Aquaporinok, vízcsatorna proteinek LEA (late embryogenesis abundant protein) pl. HVA1, chaperonok vagy hidrofil, vízkötő fehérjék) (DREB=dehydration response element binding factor)

A sóstressz

A tengervíz és az öntözővíz tulajdonságai

Definíciók Sóstressz: olyan sókoncentrációt jelent, amely egy tipikus termesztett növény optimális növekedéséhez szükséges koncentrációnál nagyobb (25 mM Na +< ) Szodicitás, szalinitás: szodicitásról akkor beszélünk, ha a Na+ ion a talaj kationcserélő kapacitásának 15%-ánál nagyobb részét foglalja el Óceánok: az óceánok vizében a Na+ koncentrációja ~460 mM, a Cl- 540 mM. A talaj szalinitását Na2SO4 és CaCl2 is okozhatja.

Sóstressznek kitett rizs növények

I. Halofiták: jól növekednek 200-500 mM NaCl-on I.A. Euhalofiták – fakultatív halofiták, azok a genotípusok, amelyek sót igényelnek az optimális növekedéshez; Suaeda maritima, Atriplex nummularia I.B. Miohalofiták – képesek magas sókoncentráción növekedni, de a só gátolja növekedésüket; Atriplex hastata, Spartina townsendii, cukorrépa Az obligát halofiták elsődlegesen a sós vizekben élő cianobaktériumok és algák között találhatók. II. Halofiták és egyes glikofiták – 200 mM NaCl-on jelentős növekedéscsökkenés, ilyenek a gyapot, árpa, paradicsom, bab, szója. III. Erősen sószenzitív glikofiták – a sóstressz hiperozmotikus stresszt és ionegyensúly felbomlást okoz (avokado, gyümölcsfák)

Halofita növények: optimális növekedésükhöz magas sókoncentráció szükséges Sótoleráns növények, tolerálják a sót, de növekedésük gátolt Halofiták és nem-halofiták, sómirigyek nincsenek, bizonyos mértékű tolerancia növekedésgátlással Glikofiták, szenzitívek

Atriplex nummularia Salicornia Suaeda maritima

Primér hatások: - vízhiány (ozmotikus stressz) - ionegyensúly felborulása; a Na+ gyorsan belép a sejtbe. A Na+ citotoxikus, a K+ esszenciális. A Ca2+ feleslege a karrier K+/Na+ szelektivitását befolyásolja. Másodlagos hatások Csökkent sejtmegnyúlás, asszimilátum produkció – az akklimatizáció során csökken a sejtmegnyúlás sebessége, ami hat a fotoszintetikus termékek produkciójára A fotoszintézis hatékonysága csökken – a szénmetabolizmus és a fotofoszforiláció sóérzékeny

Másodlagos hatások, folytatás Csökkent citoszolikus metabolikus folyamatok – a halofiták és glikofiták citoszolikus enzimei egyenlő mértékben érzékenyek a NaCl-ra. Reaktív oxigénformák (ROS) keletkezése -az elektrontranszport folyamatok túl gyorsak az aktuális elektronakceptor visszaoxidálódásához képest (fotoszintézis, fotorespiráció, mitokondriális elektrontranszport) Sejthalál –membrándestrukció, fehérjék oxidációja, enzimek inaktiválódása és RNS/DNS károsodás

A Na+ túl magas koncentrációi a citoplazmában közvetlenül dehidrálják a fehérjéket. A kompatibilis ozmotikum, a prolin ezt megakadályozza.

Distichlis spicata halofita növény sómirigye (a Distichlis spicata halofita növény sómirigye (a.), és sókristályok megjelenése a levélen (b., c.) b./ c./ a./

Az ozmotikus adaptáció és az ionok kompartmentalizációja A Na+ és Cl- ionok a vakuólumba kerülnek A kompatibilis ozmotikumok a sejtszervecskékbe A sejttérfogat akár 10- 100-szorosára is nőhet a vakuólum méretének a növekedése következtében

A sótolerancia biokémiai markerei: kompatibilis ozmotikumok Oldható cukrok: a glikofitáknál az ozmotikus adaptáció 50%-áért felelősek. A toleránsak rendszerint többet akkumulálnak. Oldható proteinek: az ozmotikus adaptációban is szerepet játszhatnak. Aminosavak és amidok: alanin, arginin, glicin, szerin, prolin, citrullin, ornitin, glutamin, aszparagin. A prolin gyakran akkumulálódik, lehet tünet is. Kérdéses a szerepe az ozmoregulációban. Poliolok: mannitol, szorbitol, ononitol, pinitol

A glicin-betain, egy sóstressz hatására szintetizálódó kompatibilis ozmotikum nem a vakuólumban, hanem a citoplazmában és kloroplasztiszban kompartmentizálódik

A hőmérsékleti stressz - fagyáspont fölötti alacsony hőmérséklet fagyáspont alatti hőmérséklet magas hőmérséklet

A hideg és meleg éghajlatú területről származó fajok eltérően reagálnak a hőmérséklet emelésére A./ Tidestromia oblongifolia, Death Valley, California, meleg élőhely B./ Atriplex sabulosa, ÉNY California, hűvös élőhely Genetikailag rögzült hőtolerancia ill. szenzitivitás A Tidestromia fotoszintézise, légzése és membránjai (elektrolit kieresztése) is kevésbé érzékeny a hőmérséklet emelkedésére.

Néhány faj hőérzékenysége A magas hőmérséklet a membránok stabilitását szünteti meg (a folyadékkristályos szerkezet „megolvad”. Enzimaktivitásokra hat. Védekezés: hősokk proteinek (HSP)

A hősokk proteinek típusai, hő hatására indukálódnak Kis molekulasúlyúak: (10-30kDa): az aggregálódott, térszerkezetét elvesztett proteinekhez kötődnek és lehetővé teszik, hogy a nagy molekulasúlyú HSP-k, mint molekuláris chaperonok (dajka proteinek) helyreállítsák azok térszerkezetét. Nagy mólsúlyú HSP-k (60-114 kDa) molekuláris chaperonok, ATP hidrolizáló aktivitásuk van, kijavítják a sérült fehérjéket.

Alacsony hőmérsékleti stressz ---fagyáspont fölötti (chilling) érzékenység/károsodás * a sejtmembrán szerkezetében reverzibilis változások * függ a membrán lipidek zsírsav telítettségétől * folyadék-kristályos → gél állapot közötti átváltozás------ tranzíciós hőmérséklet, Tt

Membránalkotó lipidek

A membránszerkezet folyadékkristályos – gél tranzíciójának következménye a membrán-integráns ATPáz aktivitására termofil és hidegtűrő növények esetében Rizs Kukorica Búza

Zsírsavösszetétel alakulása a hidegérzékeny és hidegre nem érzékeny fajban

Fagypont alatti hőmérsékletek

Elsődleges esemény: membránkárosodás, dehidráció jég keletkezése az apoplasztban: a jég -ja alacsonyabb, mint a vízé; a víz a -en „mentén", az apoplasztba vándorol; (-10 C-on a víz 90%-a a sejten kívül van!) fagyás indukált dehidráció, nagyon erős vízhiány a membrán lipidek fázisváltozása

A túlhűlés A: túlhűlés B-C: az apoplaszt megfagyása C-D: túlhűlés D-E: az egyes sejtek megfagyása

A hidegakklimatizáció folyamata Gyors és átmeneti ABS koncentráció növekedés lipid összetétel változása szaharóz, stb. akkumuláció hidrofil, LEA típusú polipeptidek szintézise egyéb faktorok: a keletkezett reaktív oxigén gyökök eliminálása protein denaturáció helyreállítása (chaperonok indukciója)

Fagytolerancia gének Poligenikus, kevés additív hatással Vizsgálata: hidegindukcióval megjelenő gének azonosítása, mutánsok izolálása Hideg indukálta gének enzimek, pl. FAD8 (Arabidopsis), zsírsav deszaturáz (Fatty Acid Desaturase) Chaperonok, hsp70 (spenót) Jelátvitelben szerepet játszó és reguláló proteinek: MAP kináz, MAPKKináz

Akklimatizáció fiziológiai szinten edzés (akklimatizáció): a membrán stabilitása megnövekszik (tranzíciós hőmérséklet) prolin akkumuláció az első napokban 24 órás ABA tranziens szénhidrát akkumuláció telítetlen zsírsavak részaránya megnövekszik