Gráfok szélességi bejárása

Slides:



Advertisements
Hasonló előadás
A Floyd-Warshall algoritmus
Advertisements

A Dijkstra algoritmus.
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Készítette: Major Máté
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G irányított vagy irányítás nélküli, véges gráf. Az eljárás célja a G gráf összes csúcsának bejárása.
Minimális költségű feszítőfák
DAG topologikus rendezése
Készítette: Hanics Anikó. Az algoritmus ADT szintű leírása: A d[1..n] és P[1..n] tömböket, a korábban ismertetett módon, a távolság és a megelőző csúcs.
Készítette: Gál László. Színezés (nyílt/zárt halmaz) Fehér:még nem értük el Szürke: elértük, de nincs kiírva Fekete: kiírtuk és kiterjesztettük.
Dijkstra algoritmus Irányított gráfban.
Szélességi bejárás Párhuzamosítása.
Szélességi bejárás , 0.
Dijkstra algoritmus Baranyás Bence. Feladat Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges.
Gráf Szélességi bejárás
Gráfok szélességi bejárása Algoritmus bemutatása egy gráfon példa.
Gráf szélességi bejárása. Alapfogalmak G = (V,E)irányított, véges, nem üres gráf d (s,u)két csúcs távolsága lút hossza, élek száma Qsor adatszerkezet.
Prím algoritmus.
Dijkstra algoritmus. Kiválasszuk a legkisebb csúcsot, ez lesz a kezdőcsúcs, amit 0-val címkézünk és megjelöljük sárgaszínnel. Szomszédjai átcímkézése.
„Országos” feladat. Feladat: Egy tetszőleges, színes országokat tartalmazó térképen akar eljutni egy kommandós csapat egy országból egy másikba. Viszont.
Dijkstra algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
Dijkstra algoritmusa Egy csúcsból a többibe vezető legkisebb költségű út megkeresése Az algoritmus működésének leírása és bemutatása LL.
Szélességi bejárás A szélességi bejárással egy irányított vagy irányítás nélküli véges gráfot járhatunk be a kezdőcsúcstól való távolságuk növekvő sorrendjében.
Gráf szélességi bejárása
Készítette: Lakos Péter.  Adott egy élsúlyozott, véges gráf  Negatív élsúlyokat nem tartalmaz  Lehet irányított vagy irányítatlan  Továbbá adott egy.
Készítette: Lakos Péter.  Adott egy irányított vagy irányítatlan, véges gráf.  Írjuk ki a csúcsokat egy kezdőcsúcstól való távolságuk növekvő sorrendjében.
Algoritmusok II. Gyakorlat 2. Feladat Pup Márton.
Algoritmusok II. Gyakorlat 3. Feladat Pup Márton.
Hierarchikus lista Kétféle értelemezése van:
Gráf Szélességi bejárás/keresés algoritmusa
Készítette: Mester Tamás METRABI.ELTE.  Adott egy G=(V,E) élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráf.
Fák.
A Dijkstra algoritmus.
Gráf szélességi bejárása SzB(G,p). Tetszőleges gráf, melyben a p csúcsot választottam kiindulónak: A gráfnak megfelelő fa:
SZÉLESSÉGI BEJÁRÁS Gréczy Ákos – JKR7ZR. MESE Van egy középkori kisváros, ahol az utcai lámpákat egy korosodó lámpagyújtogató ember gyújtja fel. Egyik.
Készítette: Hanics Anikó. Az algoritmus elve: Kezdetben legyen n db kék fa, azaz a gráf minden csúcsa egy-egy (egy pontból álló) kék fa, és legyen minden.
1 Szélességi Bejárás Györgyi Tamás – GYTNAAI.ELTE 2007 Március 22 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S b a d e f h g c.
1 Dijkstra Algoritmusa Györgyi Tamás – GYTNAAI.ELTE 2007 Április 02 Algoritmusok És Adatszerkezetek 2 Gráfalgoritmus S a b c d e
Az ábrán az inicializáló blokk lefutása utáni állapotot láthatjuk. A KÉSZ halmazhoz való tartozást színezéssel valósítjuk meg. A nem KÉSZ csúcsok fehérek,
Mélységi bejárás Az algoritmus elve: Egy kezdőpontból kiindulva addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba, amelyből már nem.
Szélességi bejárás. Kezdőcsúcsból felvétele Innen haladunk egy szinttel mélyebbre, felvesszük az összes olyan csúcsot, amit így elérhetünk Ha elfogytak,
Kruskal-algoritmus.
Szélességi bejárás. Kezdőcsúcs felvétele Innen haladunk egy szinttel lejebb, itt felvesszük az összes olyan csúcsot, amit elérünk Ha elfogytak, akkor.
Gráfok ábrázolása teljesen láncoltan
Szélességi bejárás. Feladat  Szélességi bejárás módszerrel menjünk végig egy tetszőleges gráfon.  Kikötés: A gráf egyszerű, azaz hurok- és többszörös.
Horváth Bettina VZSRA6.  Célja: Az eljárás célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben.
Útkeresések.
SZÉLESSÉGI BEJÁRÁS Pap Imre DVX468. A bejárás Meglátogatjuk az első csúcsot, majd ennek a csúcsnak az összes szomszédját. Aztán ezen szomszédok összes.
Algoritmusok és Adatszerkezetek Egy kifejezés lengyelformára hozása - bemutató.
Morvai Mária-Júlia F3D3D4.  Adott egy G=(V,E)élsúlyozott, irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó,véges gráf. Továbbá adott.
Gráf szélességi bejárása. Cél Az algoritmus célja az, hogy bejárjuk egy véges gráf összes csúcsát és kiírjuk őket a kezdőcsúcstól való távolságuk szerint.
DIJKSTRA- ALGORITMUS. A Dijkstra-algoritmus egy mohó algoritmus, amivel irányított vagy irányítás nélküli, negatív élsúlyokat nem tartalmazó, véges gráfokban.
Gráf szélességi bejárása. A szélességi bejárás elmélete Célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő.
Gráfalgoritmusok Szélességi bejárás.
Szélességi bejárás Gráf-algoritmusok Algoritmusok és adatszerkezetek II. Gergály Gábor WZBNCH1.
Prim algoritmus Algoritmusok és adatszerkezetek 2. Újvári Zsuzsanna.
MÉLYSÉGI BEJÁRÁS FZGAF0 – PINTÉR LÁSZLÓ. ALGORITMUS ELMÉLETE Egy s kezdőpontból addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba,
INFOÉRA Gráfok, gráfalgoritmusok II. (Horváth Gyula és Szlávi Péter előadásai felhasználásával) Juhász István-Zsakó László: Informatikai.
Szélességi bejárás. Véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben Egy csúcsot egyszer járunk be Egyenlő.
Gráf Szélességi bejárás Készítette: Giligor Dávid Neptun : HSYGGS.
3. Feladat Szélességi Bejárás FZGAF0 – Pintér László.
Eötvös Konferencia, 2008 április 26. Kovács Máté 1 Útkeresések optimalizálása számítógépes játékokban.
Szélességi bejárás Pátyerkó Dorina (VTYX9O). Szélességi bejárás algoritmusa Kijelölünk egy kezdőcsúcsot. A csúcs szomszédjait megkeressük, majd betesszük.
Gráfalgoritmusok Tassy Gergely Veres Péter Gimnázium, Budapest június 30.
A Dijkstra algoritmus.
Gráfok szélességi bejárása Dijkstra algoritmus
Depth First Search Backtracking
Készítette Tácsik Attila
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Gráfalgoritmusok G=(V,E) gráf ábrázolása
Név: Pókó Róbert Neptun: OYJPVP
Előadás másolata:

Gráfok szélességi bejárása

Általános leírás Az eljárás célja egy véges gráf összes csúcsának bejárása a kezdőcsúcstól való távolságuk szerinti növekvő sorrendben A bejárt csúcsok sorrendje „szintfolytonos” lesz, azaz először az 1, majd a 2 távolságra lévő csúcsokat dolgozzuk fel, majd így tovább Ha egy csúcsot már bejártunk, a későbi odajutásoktól el kell tekinteni Azonos távolság esetén a sorrend nem definiált

ADS szintű megvalósítás Alkalmazzunk sor adattípust a szemléltetéshez! A sorban csak k vagy k+1 távolságú csúcsok lehetnek az elérésük sorrendjében, amely egyben a k-tól való távolságuk növekedő sorrendje Ameddig ki nem ürül a sor, vegyük ki az első elemet, írjuk ki és a még sorra nem került szomszédjait rakjuk be a sorba.

Extra információk Csúcsonként tárolt információk: csúcs kiírási sorszáma kezdőcsúcstól való távolság (kezdetben –1) Csúcsok lehetséges státuszai: fehér: még nem értük el a csúcsot szürke: elértük, de nincs kiírva fekete: kiírtuk és továbbhaladtunk a szomszédaihoz Kezdetben minden csúcs fehér, csak az első szürke

Lépések Kivesszük a sorból az 1-es csúcsot Elérjük az 1-es csúcs még fehér szomszédait, behelyezzük őket a sorba, majd szürkítünk 1-es csúcsot feketítjük

Magyarázat szín[1..n] – csúcsokkal indexelt tömb, amely a csúcsok színét tárolja d[1..n] – csúcsok távolsága a kezdőponttól P[1..n] – csúcsokhoz vezető úton a megelőző csúcs Kezdeti állapot: minden csúcs végtelen távolságra van a kezdőcsúcstól

Struktogram

Műveletigény A szélességi bejárás műveletigénye: Éllistást ábrázolás: T(n) = Θ(n) + Ο(e) = Ο(n + e) Csúcsmátrixos ábrázolás: T(n) = O(n + n * n) = O(n2 ) * n csúcsok száma, e élek száma