Energia és környezetvédelem

Slides:



Advertisements
Hasonló előadás
Szélkerék-erdők a világban és hazánkban
Advertisements

Zéró CO2-Fenntartható Építészet ZÖLD BERUHÁZÁSI RENDSZER Dióssy László címzetes egyetemi docens szakállamtitkár Budapest november 5.
Energia – történelem - társadalom
1 E – utakon az EU Glattfelder Béla. Dekarbonizáció 80% Forrás: Európai Bizottság.
Bonifertné Szigeti Márta – ügyvezető igazgató
Megújuló energiaforrások Napenergia hasznosítása
Gyors megtérülés termál, vagy hulladékhő hasznosítással, utóbbi esetben a meglévő környezeti ártalmak csökkentésével!
© Gács Iván (BME)1/10 Energia – történelem - társadalom Energia - teljesítmény.
TOYOTA HIBRIDEK – a fenntartható mobilitás alternatívái
Modern technológiák az energiagazdálkodásban - Okos hálózatok, okos mérés Haddad Richárd Energetikai Szakkollégium Budapest március 24.
Fenntartható energiagazdálkodással az éghajlatváltozással szemben: retorika vagy realitás? Budapesti Műszaki és Gazdaságtudományi Egyetem Környezetgazdaságtan.
Energiatakarékos otthon
Török Ádám Környezettudatos Közlekedés Roadshow,
Solar rendszerek környezeti hatásai Ifj. Filó György.
NEM MEGÚJULÓ ENERGIAFORRÁSOK
ÚJ KIHÍVÁSOK, ALTERNATÍVÁK A FENNTARTHATÓSÁG ÚTJÁN „LEGYEN SZÍVÜGYÜNK A FÖLD!” Nukleáris energiatermelés a fenntarthatóság jegyében Bátor Gergő.
Energia témakör tanítása Balogh Zoltán PTE-TTK IÁTT A legelterjedtebb energiahordozók.
Megújuló energiaforrások.
A Magyar Természetvédők Szövetsége az Éghajlatváltozási Stratégiáról Farkas István, ügyvezető elnök Magyar Természetvédők Szövetsége Föld Barátai Európa.
A Föld energiagazdasága
Dr. Gács Iván, BME Energetikai Gépek és Rendszerek Tanszék 1 Környezetvédelem Üvegházhatás.
Dr. Gerse Károly MVM Zrt. vezérigazgató-helyettes április 18. Európai energiapolitika - magyar lehetőségek a villamosenergia-iparban Kihívások Lehetőségek.
Klímaváltozás – fenntarthatóság - energiatermelés
Légszennyezőanyag kibocsátás
A jövő és az energia Mi lesz velem negyven év múlva ? Mivel fogok közlekedni ? Fázni fogok otthon vagy melegem lesz ?
Készítette: Gáti-Kiss Dániel Témakör: Energiagazdálkodás
Mi is az? görög ενεργεια kifejezésből Ahol: - az εν- jelentése „be-” - az έργον-é pedig „munka” - az -ια pedig absztrakt főnév Az εν-εργεια összetétel.
Az alternatív energia felhasználása
Az alternatív energia felhasználása
Megújuló energiaforrások Felkészítő tanár: Venyige Judit
Megújuló Energiaforrások
Megújuló energia Készítette: Bíró Tamás
Hagyományos energiaforrások és az atomenergia
Az energiaellátás és fogyasztás tudományos alapok és feladatok Meskó Attila A magyar energiapolitika és környezetpolitika új kihívásai április 10.
1 Megújuló villamosenergia arányát tekintve: Új befektetések a fenntartható energiarendszerekbe Technológiánként: Értékben: Régiónként: Forrás:
Megújuló energiaforrások
Energiahatékonyság és fenntartható fejlődés
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Energetikai Gépek és Rendszerek Tanszék Dr. Ősz János Fenntartható fejlődés és energetika.
Szén-dioxid leválasztás és tárolás Környezetvédelmi technológia az erőművi technológiában.
Atomerőmű Tervezet Herkulesfalva október 1. Gamma Atomerőmű-építő Zrt.
Megújuló energiaforrások: Szélenergia
A Kiotói Jegyzőkönyv Énekes Nóra Kovács Tamás.
Fenntartható fejlődés
Jut is, marad is? Készítette: Vígh Hedvig
Geotermikus erőművek létesítésének lehetőségei Magyarországon
Megújuló energiaforrások – Lehetőségek és problémák
szakmai környezetvédelem megújuló energiák 1.
EGYEBEK : Hibridhajtás : Erőforrás: kombinált Általában belsőégésű motor+elektromos hajtás.
Ember és környezete Balogh Zoltán PTE-TTK IÁTT Környezetvédelem.
AZ ÉGHAJLATVÁLTOZÁS VESZÉLYE ÉS A HAZAI KLÍMAPOLITIKA Szabó Imre miniszter Környezetvédelmi és Vízügyi Minisztérium február 27.
Civin Vilmos MVM Zrt. „Klímacsúcs” Budapest, február 27. Klímaváltozás és egy állami tulajdonú villamos társaság.
Bioenergiák: biodiesel, alga olaj
Alkohollal a csúcsra Kaszab István Szuro-Trade cégcsoport Környezettudatos közlekedés roadshow 2012.
Környezettudatos közlekedés 2030 – Nemzeti Energiastratégia 2030
„Megújuló energia-megújuló vidék” Az agrárgazálkodás lehetőségei a zöld energia előállításában Kovács Kálmán államtitkár Tájékoztató Fórum, Nagykanizsa.
1 E – utakon az EU Glattfelder Béla. Dekarbonizáció 80% Forrás: Európai Bizottság.
Az az atomerőművek energiatermelése, biztonsága és környezeti hatásai
INTERNATIONAL ENERGY AGENCY
Energetikai gazdaságtan
Az új nemzetközi megállapodás létrehozása EUROPEAN COMMISSION FEBRUARY 2009 Éghajlatváltozás.
Az alternatív energia felhasználása
Globalizáció és környezeti problémák
A biomassza felhasználása II.. A biomassza felhasználása II. (tendenciák) EU tendenciák Hazai elképzelések –Lakossági elfogadottság –NCST –Energiafajták.
4. Energiaátalakitó folyamatok és gépek
A biomassza energetikai értékelése Dr. Büki Gergely Energiapolitika 2000 Társulat június 11.
Az alternatív energiahordozók és felhasználásuk. Hagyományos energiahordozók és környezetszennyezés ● Fosszilis tüzelőanyagok (szén, gáz, kőolaj) ● A.
Megújuló energia alkalmazása
GEOTERMIKUS ENERGIA.
Energetikai gazdaságtan
Bioenergia, megújuló nyersanyagok, zöldkémia
Előadás másolata:

Energia és környezetvédelem Kiss Endre DMJV Környezetvédelmi Konferenciája 2007. június 6.

Technológia és ember Ősember Népességrobbanás a tyúk, vagy a technológiai fejlődés? Éghajlatváltozás-alkalmazkodás Létrejött-e nagy kultúra kellemes időjárási viszonyok között? Az energiafelhasználás változása

Fenntarthatóság A források kiapadnak, ha csak használjuk azokat Pótolhatók-e a források? Körfolyamatok (oxigén, szén, stb) Újrafelhasználás Energia

Energia Újrafelhasználás lehetséges? Hatásfok (1-nél kisebb) Hova lesz a hulladékhő?

Az energia II. A felszabadult energia Az egyenletbe Q-ként lép be, majd munkaként, illetve hulladék hőként távozik A Termodinamika II. törvénye Nem készíthető olyan gép, amelynek hatásfoka 1 (100%) lenne

A felszabadítható energia gyújtás E Alapállapot (kvázistacionárius egyensúly) Kinyerhető energia Alapállapot (kvázistacionárius? állapot)

Energia IV. Qfel W’ Qle

Energia hatásfok Nem 100% Nem 80% Sokszor 16% Szénerőmű-villamos energia-világítás 16% x 70% x 2% ? 0,22% 20MJ-ból 44kJ fény Akkumulátoros gépjármű, Terminátor kontra diesel gépjármű

Energiaforrások Fosszilis tüzelőanyagok Atomenergia (maghasadás) Fúziós energia? Megújuló energiák

A globális energiafelhasználás változása Olaj egyenérték (x millió tonna) II. olaj-válság Atomenergia I. olajválság Hidrogén II. világháború Földgáz I. világháború Olaj Szén

Globális energiafelhasználás a jövőben Olaj egyenérték (x milliárd tonna) Megújuló energiák Atomenergia Földgáz Olaj Szén

Energia, széndioxid Több energia, több CO2 Energia = CO2 , NOx, SOx, por, stb

Tények I.

Tények II.

Tények III. alakulása CO2 koncentráció Fosszilis tüzelőanyag fogyasztás (100 Mt/év) CO2 koncentráció alakulása

A CO2 hozzájárulása a globális felmelegedéshez Egyéb Óceánia NOx M. E. Freon Észak- Amerika 27% Ázsia Dél-Amerika 5% CH4 19% CO2 64% EU 28% Afrika Az üvegházhatású gázok hozzájárulása a globális felmelegedéshez Regionális CO2 kibocsátás mértéke

CO2 kibocsátás Magyarországon, Napjaink/Cél Összes üvegházhatású gázkibocsátás Millió tonna szén-dioxiddal egyenértékű Cél Jelenlegi kibocsátás Történelmi kibocsátás Kyotoi célkitűzés CO2 kibocsátás mennyisége (tonna/év/fő 1995-ben): Magyarország- 7.8, Japán- 9.2, USA- 19.6, UK- 9.7, Világátlag-3.9

CO2 kibocsátás Japánban és az Egyesült Államokban, Napjaink/Cél (Célkitűzés: USA-7%, Japán-6%, EU-8%, 2012/1990 a COP-3 Kyotoi Jegyzőkönyv alapján) IPCC : Éghajlatváltozási Kormányközi Testület (alapítva az UNEP & WMO által) UNFCCC : Egyesült Nemzeti Keretrendszer Egyezmény az Éghajlatváltozásért COP :Az UNFCCC részvevőinek konferenciája

Kyoto Protocol Széndioxid kereskedelem

Fenntartható fejlődés Avagy mivel járunk 30 év múlva?

A fosszilis tüzelőanyagok és ásványok várható „élettartama” Szén Olaj Földgáz Urán Összesen R [Ttoe] 0.329 0.142 0.131 0.045 0.647 E [Ttoe] 3.42 0.311 0.295 ---- 4.03 P [Gtoe] 2.29 3.15 1.91 0.60 7.95 R / P [év] 144 40 69 75 81 E / P [év] 1493 99 154(?) 507 R:biztos készlet, E: becsült készlet, P: éves termelés

A kitermelt olaj mennyiségének változása x milliárd olajhordó évek Biztos készlet /Éves termelés Biztos készlet Éves termelés 1995

A C. Cambell-féle olajcsúcs elmélet (ASPO, 2004) Kitermelési csúcs 2004 Világ Világ kivéve Perzsa-ö. Perzsa-öböl USA, Kanada Volt Oroszország Nagy-Britannia, Norvégia Éves olajkiermelés (milliárd hordó)

Lehetőségek Hidrogén gazdaság Hulladék mint nyersanyag Expanzió?

Hidrogén gazdaság A technológia kész Tüzelőanyag cella, villanymotor Hibrid járművek De miből lesz a hidrogén?

Miből lesz a hidrogén? Fosszilis tüzelőanyagból az átalakítással veszteség jár, de az eredő hatásfok jobb mint az erőmű – akkumulátoros autó rendszeré Vízből (erőmű, atomerőmű, szélerőmű) Metánhidrátból Stb.

Hidrogén technológia („ára”) Benzin Hidrogén Ár Ár Költség Költség 0 szint

Energia megtakarítás a szállítási szektorban Még hatékonyabb autók (elmozdulás a kisebb és könnyebb autók felé) Hybrid autók, elektromos autók, üzemanyag cellás autó. Gyújtás-stop mechanizmus A közlekedési dugók csökkentése (vics rendszer stb.) A tömegközlekedés használata Vics =[Intelligens gépjármű vezérlési rendszer]

Új energiák fejlesztése 1. Nap és Szélenergia felhasználása az energiatermelésben 2. Biomassza Energia felhasználása az energia és a hőtermelésben (CO2 semleges) 3. Hidrogént alkalmazó tüzelőanyag cella által termelt energia (a jövő ideális energiája) 4. Új & tiszta fosszilis tüzelőanyagok (cél; ultratiszta) 1) Tiszta Szén Technológia: Folyadékosítás, Elgázosítás, IGCC (integrált szénelgázosításos és égetéses ciklusú eljárás), IGFC (integrált szénelgázosításos tüzelőanyag cella) 2) GTL Tüzelőanyag: “Gázból folyékony” tüzelőanyag (Továbbfejlesztett folyékony tüzelőanyag) 3) DME Tüzelőanyag: “Dimetil-éter” (CH3OCH3)(Tiszta új tüzelőanyag) 4) Metán hidrát: (Nagy jövőbeni potenciál)

A biomassza energia felhasználása Fa, Forgács, Faszén Metanol, Etanol és Biodízel üzemanyag Metán erjesztés Égetéssel keletkező energia és hő Tüzelő gáz Folyékony tüzelőanyag Keverés kőolajjal Helyi Gázmotor és gáz turbina Tüzelőanyag cella Benzin és dízel motor Energia, Hő, Gépkocsi

Az FCV fejlesztési háttere A fosszilis erőforrások felhasználásának csökkentése A CO2, szénhidrogének, szálló por és más káros anyagok kibocsátásának csökkentése az ultra-tiszta tüzelőanyag (H2) által. A járművek üzemanyag fogyasztásának továbbfejlesztése Különböző fejlesztési projektek: -Japán : Toyota & Honda FCV teszt használat (2002.12 ---) -USA : „Szabad Autó Projekt Kaliforniában (Az FCV földgáz üzemanyagot használt) -EU : “CUTE” (7 ország, 9 város), “ECTOS” (Reykjavik, Izland) <2001 - 2005> a Daimler-Chrysler üzemanyagcellás busza (a cél a jövőbeni H2 energia társadalom)

A különféle áramfejlesztő telepek és tüzelőanyagok CO2 kibocsátása A különböző áramfejlesztő telepek általi CO2 kibocsátás mértéke(g/kWh) Szénerőmű Olajtüzelésű e. LNG power P. Naphő e. Óceáni termál Árapály erőmű Naperőmű Szélerőmű Hullámenergia Napenergia (otthoni) Geotermikus en. Atomerőmű Vízierőmű

A felvett teljesít-mény A különböző fényforrástípusok összehasonlítása Lámpa teljesítménye [W] A felvett teljesít-mény Fényáram [lm] Fényhatásfok [lm/W] Izzólámpa   60   60 810 13.5 Neoncső 40 43 3,000 69.8 Nagyfrekvenciás neon   32   35 3,200 91.4 Higanygőz lámpa   400   427 22,000 51.5 Nátriumgőz lámpa   444 40,000 90.1 Fehér LED 44 4 000 100 felett

Dobjuk ki az izzólámpát Használjunk fluoreszcens világítótestet. Legyen több higany a környezetben! A fejlődés fokmérője legyen a kopasz és fogatlan emberek száma!

Hulladékhő Hazánkban csak az alacsonyhőmérsékletű, de a környezetnél melegebb (30-50 oC) elfolyó hűtővizek mintegy 2GW teljesítményt visznek el Ez is tekinthető megújuló energiának!

Hulladékhő felhasználása Alacsonyhőmérsékletű elfolyó vizek Hőszivattyús technológiák Magasabb hőmérsékletű elfolyó vizek, gázok Hőszivattyú-gőz-villamos energia-hűtés