5. A klasszikus logika kiterjesztése

Slides:



Advertisements
Hasonló előadás
Predikátumok Dr. György Anna BMF-NIK Szoftvertechnológia Intézet.
Advertisements

Extenzionális mondatfunktorok
Az információ alaptulajdonságai 1.Mérhető 2.Tudásunkra hat Értelmességi alapfeltétel értelmes >< igaz állítás.
Nem alethikus logika.
Matematika a filozófiában
Miről szól a Katégoriák? Cat.3: „Amikor valamit másvalamiről, mint alanyról állítunk, mindaz, amit az állítmányról mondunk, az alanyról is mondható. Pl.
Matematikai logika.
É: Pali is, Pista is jól sakkozik. T: Nem igaz. É: Bizonyítsd be. Mi nem igaz? T: Nem igaz, hogy Pali jól sakkozik. Nyertem É: Pali vagy Pista.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar
Matematikai logika A diasorozat az Analízis 1. (Mozaik Kiadó 2005.) c. könyvhöz készült. Készítette: Dr. Ábrahám István.
Logika 3. Logikai műveletek Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 24.
LOGIKA.
Barwise-Etchemendy: Language, Proof and Logic
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Kocsisné Dr. Szilágyi Gyöngyi. Elérehet ő ség: aszt.inf.elte.hu/~szilagyi/ aszt.inf.elte.hu/~szilagyi Fogadó óra: hétf ő
Logika Érettségi követelmények:
Logikai műveletek
MI 2003/5 - 1 Tudásábrázolás (tudásreprezentáció) (know- ledge representation). Mondat. Reprezentá- ciós nyelv. Tudás fogalma (filozófia, pszichológia,
ARISZTOTELÉSZ (Kr. e ).
Logika 5. Logikai állítások Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 10.
Logika 7. A klasszikus logika kiterjesztése Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 24.
Az érvelés.
Halmazelmélet és matematikai logika
Szavak a tartályban Előadó: Kovács Gábor, ELTE-BTK filozófia szak
Bevezetés a terminológiába. input output Gépi feldolgozás Jelentés- független Jelentés- függő Információfeldolgozás.
Bekő Éva Eötvös Loránd Tudományegyetem Elérhetőségem:
Összefoglaló. Valós világ Formális Modell –Sintaktikusan ellenőrizhető modell.
1. Bevezetés a tárgy célja: azoknak az eszközöknek és módszereknek a megismertetése és begyakoroltatása, melyek az érvelések megértéséhez, elemzéséhez,
Természetes és formális nyelvek Jellemzők, szintaxis definiálása, Montague, extenzió - intenzió, kategóriákon alapuló gramatika, alkalmazások.
Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 17.
Logika 4. Logikai összefüggések Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 3.
Miért nem valóságos az idő?
Érvelés, bizonyítás, következmény, helyesség
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.
Atomi mondatok FOL-ban Atomi mondat általában: amiben egy vagy több dolgot megnevezünk, és ezekről állítunk valamit. Pl: „Jóska átadta a pikk dámát Pistának”
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
A kvantifikáció igazságfeltételei
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
(nyelv-családhoz képest!!!
Formális bizonyítások Bizonyítások a Fitch bizonyítási rendszerben: P QRQR S1Igazolás_1 S2Igazolás_2... SnIgazolás_n S Igazolás_n+1 Az igazolások mindig.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék.
Predikátumlogika.
Logika.
6.Fogalomalkotás [C. G. Hempel: A taxonómia alapjai. In: Bertalan (szerk.): A társadalomtudományi fogalmak logikája (Helikon, Budapest 2005)] 1.A definíció.
Logikai bevezető Forgács Gábor Ellenőrizzük a következő következtetéseket Egyetlen francia versenyző sem jutott be a döntőbe. Denise francia.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Logikai műveletek és áramkörök
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Az informatika logikai alapjai
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’
Tananyag: Barwise-Etchemendy: Language, Proof and Logic II. Quantifiers Weblap: Fogadóóra: H 15:30-17:00, i/226.
Kiterjesztések szemantikája: Szemantikai tartomány : Adatoknak, vagy értékeknek egy nem üres halmazát szemantikai tartománynak nevezzük. Jelölése: D. Egy.
Felosztási tétel Legyen R ekvivalenciareláció: reflexív, azaz tetsz. a-ra aRa, szimmetrikus, azaz tetsz. a, b-re ha aRb, akkor bRa, tranzitív, azaz tetsz.
Kvantifikáció:  xA: az x változó minden értékére igaz, hogy…  a: értelmetlen. (Megállapodás volt: ̒a’, ̒b’, … individuumnevek.) Annak sincs értelme,
Analitikus fa készítése Ruzsa programmal
Analitikus fák kondicionálissal
Logika szeminárium Barwise-Etchemendy: Language, Proof and Logic
Kvantifikáló kifejezések a természetes nyelvben: ̒minden’, ̒némely’, ̒̒három’, stb. Ezek determinánsok, predikátumból (VP-ből) NP-t képeznek. Az elsőrendű.
Analitikus fák a kijelentéslogikában
Fordítás (formalizálás, interpretáció)
A házi feladatokhoz: 1.5: Azonosság Jelölések a feladatszám alatt:
Logika előadás 2017 ősz Máté András
Atomi mondatok Nevek Predikátum
Érvelések (helyességének) cáfolata
Elméleti probléma: vajon minden következtetés helyességét el tudjuk dönteni analitikus fával (véges sok lépésben)? Ha megengedünk végtelen sok premisszás.
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
Előadás másolata:

5. A klasszikus logika kiterjesztése

A klasszikus logika kiterjesztése Az eddig megismert logika extenzionális logika Axiomatikus rendszer  meghatározott érvényességi és alkalmazhatósági körrel bír Megkötései: Mondatok elemzésekor csak mondatokat, neveket, (extenzionális) predikátumokat és (extenzionális) mondatfunktorokat haszálunk. A neveket felbonthatatlan egységnek tekintjük A kifejezések értékelésekor az időpontokat nem vesszük figyelembe.

Extenzionális logika Faktuális érték (extenzió): „amit egy nyelvi kifejezés jelöl vagy amire referál” (Frege) Individuumnév faktuális értéke a tárgyalási univerzum egy eleme, egy mondat faktuális értéke pedig az igazságértéke. Kifejezések interpretálásakor (értelmezésekor, egyértelműsítésekor) a faktuális értékeket mindig meg kell adni! Nem lehet név jelölet nélkül, predikátum terjedelem nélkül, mondat igazságérték nélkül. A kalsszikus elsőrendű extenzionális logikában nincs helye szemantikai értékrésnek („A francia király kopasz.” (Russell)).

Az extenzionális logika rendje Elsőrendű extenzionális logika: csak az individuumnevek helyett használ operátorral leköthető változókat (x, y, z) is. Másodrendű extenzionális logika: individuum-változók mellett predikátumváltozók (P, Q, R) is. Többedrendű extenzionális logika: más kategóriák (pl. mondatok, predikátumok, funktorok stb.) helyett is használ operátorral leköthető változókat. Teljes extenzionális logika: minden lehetséges kategóriában operátorral leköthető változók. A magasabb rendű logikai rendszerek egyre bonyolultabb rendszereket eredményeznek.

Az extenzionális logika határai Albert várja a körzeti orvost. A körzeti orvos = a helyi bélyeggyűjtő klub elnöke. Albert várja a helyi bélyeggyűjtő klub elnökét. (Ruzsa Imre példája) Egyenértékű a két állítás? Az azonosság szabályai szerint igen, hiszen a „körzeti orvos” és a „helyi bélyeggyűjtő klub elnöke” leírások jelölete ugyanaz az individuum. Mégis, a két leírás más-más helyzetre utal, eltérő gondolati tartalmat fejez ki: a jelentésük különböző.

Az extenzionális logika határai A formális logika a következtetéseinek helyességét kizárólag a kifejezések logikai szerkezetéből és a logikai szavak jelentéséből származtatja. A kifejezések tartalmától való elvonatkoztatás miatt értelmetlen kifejezésekből is „érvényes” következtetést lehet levonni: „Minden aghij fokuak. Minden fokuak tabudi.”  „Minden aghij tabudi.” Igény: a logika vonja be elemzéseibe a nyelvi kifejezések azon dimenzióját, amit jelentésnek nevezünk. A jelentés is szemantikai érték, amint az extenzionális logikában használatos igazságérték.

Intenzió A jelentés teljes gazdagsága logikailag kezelhetetlen. Megoldás: egy szűkített jelentésfogalom  intenzió. Az intenzió azon feltételek összességét jelenti, amelyek mellett a kifejezésnek logikailag kezelhető, egyértelmű, igazságértékekkel felruházott jelentés tulajdonítható. Az így pontosított jelentést nevezzük fogalomnak. A természetes nyelvi kifejezések ilyen jelentéssel nem rendelkeznek eleve  az intenzióhoz interpretálás (értelmezés, egyértelműsítés) révén jutunk. Az interpretálás a valóság tényeire vonatkoztatja a nyelvi kifejezéseket.

Individuumnevek Individuumnév extenziója: az individuális dolog. Egy individuumnév faktuális értéke a név jelölete, a tárgyalási univerzum egy konkrét, adott eleme – azon egyedi létező, amelyet a név megjelöl. Individuumnév intenziója: a név által kifejezett individuális fogalom. A tulajdonneveknek csak jelöletük van Az összetett neveknek és a névmásoknak van jelentésük, és így intenziójuk is  az a jelölet, amelyhez az interpretáció eredményeként eljutunk.

Mondatok Mondatok extenziója, faktuális értéke: az igazságértéke. Mondatok intenziója: azon feltételek összessége, amelyek mellett igaz állítást fejeznek ki. A feltételeket itt is interpretáció révén bontjuk ki. Az interpretációhoz járulhat az értékelés: a kifejezést kiegészítjük a szükséges adatokkal. Pl.: „Kitakarította a szobáját” – interpretálása: x a saját szobáját, vagy y szobáját takarította-e ki? – értékelése: mi az x és az y értéke, tehát kikről van szó?

Funktorok intenziója Intenzionális funktor: bemeneteinek extenziója nem vonja maga után egyértelműen a kimenet faktuális értékét, mert a kimenet faktuális értéke a bemenet intenziójától, jelentésétől is függ. Interpretált funktor intenziója: az a szabály, amely a bemenet intenziójából meghatározza, „kiszámítja” a kimenet intenzióját = általános fogalom „Péter fut, mivel le akar fogyni” – ha igaz, hogy Péter fut és igaz az is, hogy Péter le akar fogyni, abból még nem következik ennek a mondatnak az igazsága… Az intenzionális logika az intenzionális funktorokat is bevonja az elemzésbe. Pl. a modális logika.

Modális operátorok Modális logika: a klasszikus logika kibővítése Operátorok:  = szükségszerűen (igaz, hamis),  = lehetségsen (igaz, hamis)  modalitások Apodiktikus állítások: szükségszerűen igaz/hamis. Kontingens állítások: esetlegesen igaz/ hamis. Intenzionális : abból, hogy egy állítás igaz/hamis, nem következik, hogy szükségszerűen igaz/hamis. Szükségszerűség: Logikai szükségszerűség Ontológiai szükségszerűség Analitikus szükségszerűség

Modális logikai négyzet

Logikai négyzet Az átlósan szemközti állítások kontradiktóriusak „szükségszerű, hogy…” p  (p) negációja: „lehetséges, hogy nem…” (p) „lehetetlen, hogy…” p  p negációja: „lehetséges, hogy…” p A „szükségszerű” (p) és a „lehetetlen” (p) kontrárius: nem lehetnek egyszerre igazak: p  (p), illetve p  (p) Az „esetleges” ((p)) és a „lehetséges” (p) szubkontrárius: nem lehetnek egyszerre hamisak: (p)   (p), illetve p  (p) + Alárendeltség (szubordináció)

Lehetséges világok elmélete Hogyan alapozható meg szemantikailag a modális logika? Mit jelent a szükségszerű és a lehetetlen? Leibniz: számtalan lehetséges világ van Az emberi szellem törekvései: versek, utópiák, jog. Lehetséges világ: nem ütközik szükségszerűségbe. Logikai szükségszerűségbe: „minden ember halandó” és „nem minden ember halandó”. Ontológiai szükségszerűségbe: nem érvényesül pl. a tömegvonzás törvénye. Analitikus szükségszerűségbe: pl. nem igaz, hogy „minden férjnek van felesége”.

Lehetséges világok elmélete A lehetséges világok csak a nyelvben léteznek, mint a világ leírásának alternatívái. Egy nyelv klasszikus logikai interpretációi jelölik ki az e nyelven leírható lehetséges világok körét. Ami ezen kívül esik, az logikai lehetetlenség. A A (= lehetséges) állítást a w világban minősítsük igaznak (akkor és csak akkor), ha A igaz w valamely w’ alternatívájában. A  w1 V w2 V … V wn A A (= szükségszerű) állítást pedig akkor (és csak akkor) minősítsük igaznak w világban, ha A igaz w minden alternatívájában. A  w1 & w2 & … & wn

Időlogika (temporális logika) A klasszikus logika kiterjesztése az időben. Szükségszerű az, ami minden időben igaz. Lehetséges az, ami az idő valamely pillanatában igaz, vagy igazzá válhat. p(t) : nyitott mondat, p állítás valamely t időpillanatban igaz; az időparaméter behelyettesítésével zárt mondatot kapunk. Mondatfunktorok: P (past, múlt), F (future, jövő), (a jelenre a mondatfunktor hiánya utal).

Időlogika (temporális logika) FA : „Sohasem lesz igaz A állítás” FA : „Nem lesz mindig igaz A állítás”  PA : „Sohasem volt igaz A állítás” PA : „Nem volt mindig igaz A állítás”  FA :„Mindig igaz lesz A állítás”  PA :„Mindig igaz volt A állítás” A  ( FA)  A  (PA)  HA  A  GA : „A állítás mindig igaz” A  ( FA) V A V (PA)  HA V A V GA : „A állítás néha igaz” BPA : “Mióta A, azóta B” BFA : “Mindaddig B, amíg nem A” Egyszerűsítés: ( F)  H ( P)  G