Fizika Dr. Beszeda Imre jegyzete alapján.

Slides:



Advertisements
Hasonló előadás
Gázok.
Advertisements

Mértékegységek.
a terület meghatározása
VÁLTOZÓ MOZGÁS.
MOZGÁSÁLLAPOT-VÁLTOZÁS TEHETETLENSÉG,
MUNKA, ENERGIA.
Mértékegységek Átváltások.
Az anyag és néhány fontos tulajdonsága
Fizika Dr. Beszeda Imre 2008.
Fizika Bevezető 6. osztály.
A test tömege.
ALAPVETŐ MÉRÉSEK.
Nemzetközi Mértékegységrendszer
Általános és szerves kémia Ökrös Bence. Decimális szorzóPrefixum számértéke neve jele exa-E peta-P tera-T 10 9 giga-G 10 6 mega-M 10.
Newton törvényei.
Mértékegységrendszerek SI, IUS
Mérnöki számítások MÁMI_sz1 1.
Az erő.
BEVEZETŐ A FIZIKA TÁRGYA
Az erő.
A tömeg.
Energia, energiaváltozások
Ismétlő kérdések 1. Mennyi helyzeti energiát veszít a húgod, ha leejted őt valahonnan? Hegedül-e közben? 2. Számold ki az Einstein tétel segítségével a.
Hogyan mozognak a testek? X_vekt Y_vekt Z_vekt Origó: vonatkoztatási test Helyvektor: r_vekt: r_x, r_y, r_z Nagysága: A test távolsága az origótól, 1m,
1. előadás Általános információk A fizika tárgya Az SI mértékrendszerről Vonatkoztatási és koordináta rendszerek Az anyagi pont kinematikája.
A dinamika alapjai III. fejezet
Az erő.
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
Fizika 1. Alapvető ismeretek Alapvető ismeretek.
1. előadás Általános információk A fizika tárgya
HŐTAN 4. KÉSZÍTETTE: SZOMBATI EDIT
Legfontosabb erő-fajták
A tehetetlenség törvénye. A tömeg.
A dinamika alapjai - Összefoglalás
Egyenes vonalú mozgások
A forgómozgás és a haladó mozgás dinamikája
2. előadás.
N-Body probléma Két test közötti gravitációs erő m_i, m_j : tömeg r_ij : az i testből a j testbe mutató vektor G : gravitációs állandó Eredő erő: a túlzott.
Készült a HEFOP P /1.0 projekt keretében
Készítette: Csapó Krisztina 9/c
A legismertebb erőfajták
A tömeg (m) A tömeg fogalma A tömeg fogalma:
Ütközések Ugyanazt a két testet többször ütköztetve megfigyelhető, hogy a következő összefüggés mindig teljesül: Például a 2-szer akkora tömegű test sebessége.
Lendület, lendületmegmaradás
A NEHÉZSÉGI ÉS A NEWTON-FÉLE GRAVITÁCIÓS ERŐTÖRVÉNY
Isaac Newton és a gravitáció
Fizikai alapmennyiségek mérése
Mire van szükségünk a kémia órán? Könyv Munkafüzet Füzet Érdeklődés Figyelem Kitartás Szorgalom.
A mértékegységet James Prescott Joule angol fizikus tiszteletére nevezték el. A joule a munka, a hőmennyiség és az energia – mint fizikai mennyiségek.
FIZIKA Alapok Balthazár Zsolt Apor Vilmos Katolikus Főiskola.
A testek mozgása. 1)Milyen mozgást végez az a jármű, amelyik egyenlő idők alatt egyenlő utakat tesz meg? egyenlő idők alatt egyre nagyobb utakat tesz.
A testek néhány mérhető tulajdonsága 3. óra
SKALÁROK ÉS VEKTOROK.
óra Algebra
Az erőhatás és az erő.
Áramlástani alapok évfolyam
A fizika mint természettudomány
Az SI mértékrendszer.
Komplex természettudományos tantárgy
A mérés A mérés összehasonlítás, ahol a mérendő mennyiséget hasonlítjuk össze az egységnyinek választott mennyiséggel. Hosszúság mérése: Hosszúságot hasonlítunk.
Egyetemes tömegvonzás, körmozgás, feladatok 9. osztály
AZ ERŐ FAJTÁI.
A tehetetlenség törvénye. A tömeg.
Bevezető Mivel foglalkozik a fizika? Az anyag megjelenési formái a természetben 6. osztály Fizika.
Fizikai kémia I. a 13. GL osztály részére 2016/2017
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Méréstechnika 1/15. ML osztály részére 2017.
Szakmai fizika 1/13. GL és 1/13. VL osztály részére 2018.
Az erő fajtái Aszerint, hogy mi fejti ki az erőhatást, beszélhetünk:
Előadás másolata:

Fizika Dr. Beszeda Imre jegyzete alapján

A fizika helye a természettudományok körében Élettelen természet vizsgálata Cél a természeti jelenségek tanulmányozása, objektív törvények megismerése, ezek érvényességi határainak vizsgálata, és a törvények gyakorlati alkalmazása de : kémia, földtudomány, csillagászat is, valamint interdiszciplináris alkalmazások (pl. kristályok vizsgálata)

A fizikai megismerés folyamata konkrét  általános általános  konkrét induktív deduktív spontán tapasztalás (alma leesik a fáról) megfigyelés = tudatos kísérletezés mérés a fizikai jelenségek vizsgálata mesterséges körülmények között kezdeti feltételek egyszerre csak egy fizikai mennyiséget változtatunk miközben egy másik változását regisztráljuk (ejtegetős kísérleteket végzünk)

megfigyelés következtetés : a Föld vonzza a többi testet modell / elmélet alkotás : Newton-féle gravitációs törvény hipotézis / jóslás : vajon bármelyik két test vonzza egymást ? (fizikai mennyiségek közötti összefüggések) újabb kísérlet, megfigyelés igen

A fizikai mennyiségek jellege skalár = szám : csak nagysága van pl. tömeg vektor = szám + irány : nagyság + irány is pl. erő de más jellegű mennyiség is van még (pl. mechanikai feszültség) tenzor + mértékegység a különböző egységek nem hasonlíthatók össze !!! műveletek vektorokkal (+, -, skalárral szorzás, skaláris szorzás, vektori szorzás) összeadódó (extenzív) kiegyenlítődő (intenzív) pl. tömeg pl. hőmérséklet mennyiségek

Mértékrendszerek, alapmennyiségek általában SI : alapegységek: hosszúság, méter [m] tömeg, kilogramm [kg] idő, másodperc [s] elektromos áramerősség, amper [A] hőmérséklet, kelvin [K] anyagmennyiség, mól [mol] fényerősség, kandela [cd] kiegészítő egységek: síkszög, radián [rad] térszög, szteradián [sr] származtatott egységek: az alap- és kiegészítő egységekből algebrai műveletekkel pl : sebesség [m/s], erő [kg.m/s2], …

nem SI-egységrendszerek (pl USA): inch, coll, hüvelyk, láb, mérföld, gallon, Fahrenheit, stb … előtétszavak: … exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hekto h 102 deka da 101 deci d 10-1 centi c 10-2 milli m 10-3 mikro μ 10-6 nano n 10-9 piko p 10-12 femto f 10-15 atto a 10-18 …

pl : gigawatt, megawatt erőművek teljesítménye kilowattóra háztartások energiafogyasztása kilogramm pl, alma, kenyér, stb… tömege kilométer távolság de pl. a számítástechnikában 1 kilo = 210 = 1024 ! hektoliter hordók űrtartalma deciliter kisebb edények űrtartalma centiliter még kisebb űrtartalom deciméter, cm, mm, nm távolságok cg, mg, μg kis tömegek az ezektől kisebb ill. nagyobb egységek az atomi és még kisebb mérettartományban előforduló távolságok és energiák jellemzésére használatos

egyéb, nem SI, de használt mértékegységek: fok, perc, másodperc (szögmérés) π rad = 180o angström (Å) = 10-10 m fényév (távolság !!!) ≈ 9.46.1012 km hektár (ha) 100 m × 100 m liter (ℓ) = 1 dm3 mázsa (q) = 100 kg tonna (t) = 1000 kg óra, perc, másodperc (időmérés; és év, nap, hónap, stb…) km/h 3.6 km/h = 1 m/s atmoszféra (atm) = 101325 Pa bar, mbar = 105 Pa kalória (cal) = 4.1868 J kilowattóra (kWh) 1 Wh = 3600 J lóerő (LE) ≈ 736 W celsius fok 0 Co ≈ 273 K stb ….