AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.

Slides:



Advertisements
Hasonló előadás
T-SEJT DIFFERENCIÁCIÓ A THYMUSBAN
Advertisements

A B-sejt differenciáció antigén jelenlétében lezajló folyamatai
The key experiment of Nobumichi Hozumi and Susumu Tonegawa
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE
Monoklonális ellenanyagok
SZERZETT IMMUNITÁS FELISMERÉS.
C mIg H mIg L TCR  TCR  T-SEJT  C V Antigén receptor TCR A B- ÉS T-SEJTEK ANTIGÉN FELISMERŐ RECEPTORAI HASONLÓ SZERKEZETŰEK TCR =  +  A.
AZ IMMUNGLOBULINOK SZERKEZETE ÉS FUNKCIÓJA
Az immunoglobulin szerkezete
A B-sejt differenciáció antigén jelenlétében lezajló folyamatai A B-sejt repertoire és az ellenanyag diverzitás növelése a periférián Alternatív splicing.
B SEJT AKTIVÁCIÓ.
B SEJT DIFFERENCIÁCIÓ A CSONTVELŐBEN
B LIMFOCITÁK IMMUNOLÓGIA INFORMATIKUS HALLGATÓKNAK Dr HOLUB MARCSILLA
Dr. Falus András egyetemi tanár B lymphocyták (ontogenezis, aktiváció, osztály/izotípus, humorális immunitás)
Dr. Falus András egyetemi tanár B lymphocyták (ontogenezis, aktiváció, osztály/izotípus, humorális immunitás)
Molekuláris genetika Falus András.
Dr. Falus András egyetemi tanár Genetikai, Sejt- és Immunbiológiai Intézet Semmelweis Egyetem Általános Orvostudományi Kar B lymphocyták (ontogenezis,
Antigén receptorok Antitest, T sejt receptor A repertoire (sokféleség) kialakulása Genetikai, Sejt- és Immunbiológiai Intézet Falus András.
Kedvenc Természettudósom:
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító.
ANTIGÉNFELISMERÉS AZ ELLENANYAG ÉS A B- SEJT- ANTIGÉNRECEPTOR (BCR) ÁLTAL VALÓ ANTIGÉNFELISMERÉS SZERKEZETI ALAPJAI.
Génexpresszió (génkifejeződés)
MUTÁCIÓ ÉS KIMUTATÁSI MÓDSZEREI
SV40 infekció transzformált sejt. „korai” gének (early - E) „késői” gének (late - L) 4.7 kb SV40 genom - kicsiny „tanulóvírus” fertőzést követően először.
Dr. Falus András egyetemi tanár Genetikai, Sejt- és Immunbiológiai Intézet Semmelweis Egyetem Általános Orvostudományi Kar Antigénfelismerő receptorok.
Antigén receptorok Genetikai, Sejt- és Immunbiológiai Intézet.
Antigén-felismerő receptorok (BCR, TCR)
Készítette: Leidecker Orsolya
Transzpozonok, tumormarkerek
AZ IMMUNOGLOBULIN GÉN SZEGMENSEK SZÁMA Variábilis (V) Diverzitás (D)0027 Kapcsoló (J)546 Gene segmentsKönnyű láncNehéz lánc kappalambda Chromosome.
A TERMÉSZETES ÉS SZERZETT IMMUNITÁS SAJÁTSÁGAI Természetes immunitás mechanizmusai Szerzett immunitás Mechanizmusai Gyors válasz (órák) Lassú válasz (napok,
A TERMÉSZETES ÉS SZERZETT IMMUNITÁS SAJÁTSÁGAI Természetes immunitás mechanizmusai Szerzett immunitás Mechanizmusai Gyors válasz (órák) Lassú válasz (napok,
Elsődleges (központi) és másodlagos (perifériás) nyirokszervek:
ANTIGÉN: Mindazon struktúrák (sejtek, molekulák), amiket az érett immunrendszer felismer, és vele fajlagos, specifikus módon reagál. Immunválaszt vagy.
T-SEJTEK FEJLŐDÉSE ÉS DIFFERENCIÁCIÓJA.
SZERZETT IMMUNITÁS FELISMERÉS. DC Epitél sejtek PERIFÉRIÁS LIMFOID SZERVEK PERIFÉRIÁS SZÖVETEK SEJTEK KÖZÖTTI SZÖVET SPECIFIKUS KOMMUNIKÁCIÓS HÁLÓZATOK.
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
C mIg H mIg L TCR  TCR  T-SEJT  C V Antigén receptor TCR A B- ÉS T-SEJTEK ANTIGÉN FELISMERŐ RECEPTORAI HASONLÓ SZERKEZETŰEK TCR =  +  A.
B SEJT DIFFERENCIÁCIÓ A CSONTVELŐBEN
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
AZ ELLENANYAGOK EFFEKTOR FUNKCIÓI PLAZMA SEJT NEUTRALIZÁCIÓ Az ellenanyagok kis hányada GÁTLÁS Baktérium kötődése az epitél sejtekhez Vírus kötődése a.
B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ
Az immunglobulinok szerkezete és funkciója
AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE. AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz.
AZ ANTIGÉN FOGALMA ÉS SAJÁTSÁGAI
Az immunrendszer végrehajtó funkciói
A BAKTÉRIUMOK ELLENI IMMUNVÁLASZ
A RECEPTOR KERESZTKÖTÉSE JELÁTVITELI MECHANIZMUSOKAT INDÍT BE
SZERZETT IMMUNITÁS FELISMERÉS.
23-mer 12-mer A közbeeső DNS hurok kivágódik A heptamerek és nonamerek visszafelé illeszkednek Az RSS által kialakított alakzat a rekombinázok célpontja.
B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ
Hogyan képes a B sejt csak egyfajta könnyű és egyfajta nehéz láncot kifejezni? –Annak ellenére, hogy minden B sejtben egy apai és egy anyai Ig lókusz is.
A genetika (örökléstan) tárgya
Antigén-felismerő receptorok (BCR, TCR)
A TERMÉSZETES ÉS SZERZETT IMMUNITÁS SAJÁTSÁGAI Természetes immunitás mechanizmusai Szerzett immunitás Mechanizmusai Gyors válasz (órák) Lassú válasz (napok,
T-SEJT DIFFERENCIÁCIÓ A THYMUSBAN. A thymus szöveti felépítése.
A a Aktivált B-sejt érett naiv B-sejt Memória B-sejt B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ IZOTÍPUS VÁLTÁS Ag.
Immunbiológia - II. A T sejt receptor (TCR) heterodimer CITOSZÓL EXTRACELLULÁRIS TÉR SEJTMEMBRÁN kötőhely  lánc  lánc VV VV CC CC VV VV
Dr. Falus András egyetemi tanár Genetikai, Sejt- és Immunbiológiai Intézet Semmelweis Egyetem Általános Orvostudományi Kar B lymphocyták (ontogenezis,
A a Aktivált B-sejt érett naiv B-sejt Memória B-sejt B-SEJT DIFFERENCIÁCIÓ A PERIFÉRIÁN SZOMATIKUS HIPERMUTÁCIÓ IZOTÍPUS VÁLTÁS Ag.
PLAZMA SEJT ANTIGÉN CITOKINEK B-SEJT A B – SEJT DIFFERENCIÁCIÓT A T-SEJTEK SEGÍTIK IZOTÍPUS VÁLTÁS ÉS AFFINITÁS ÉRÉS CSAK T-SEJT SEGÍTSÉGGEL MEGY VÉGBE.
KÖZPONTI (ELSŐDLEGES) LIMFOID SZERVEK Csontvelő Tímusz
ANTIGÉN-SPECIFIKUS T – SEJT AKTIVÁCIÓ RÉSZTVEVŐK Antigénből származó peptideket bemutató sejt A T limfocita készletből szelektált peptid-specifikus T sejt.
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
AZ ANTIGÉN-FELISMERŐ RECEPTOR VARIABILITÁSÁNAK GENETIKAI HÁTTERE.
Új molekuláris biológiai módszerek
RNS TUMORVÍRUSOK (Retrovírusok)
A B-SEJTEK ÉS A HUMORÁLIS IMMUNVÁLASZ
Új molekuláris biológiai módszerek
Antigén receptorok Keletkezésük, a sokféleség kialakulása
Előadás másolata:

AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE

AZ ELLENANYAGOK SZERKEZETE KOMPLEMENT AKTIVÁCIÓ SEJTHEZ KÖTŐDÉS LEBOMLÁS TRANSZPORT Könnyű lánc (L) Nehéz lánc (H) VL CL VH CH

Elméletek az ellenanyagok termelésére, sokféleség, ellenanyagok affinitásának fokozódása az immunválasz során ellenanyagok felfedezése 1897 Paul ehrlich oldallánc elmélete (zseniális) néhány antitest volt csak ismert az 1920-as években világossá vált hogy gyakorlatilag bármely antigén ellen termeltethető ellenanyag HOGYAN LEHETSÉGES ENNYIFÉLE ELLENANYAG TERMELÉSE MÉG AZ ANTIGÉNNEL VALÓ TALÁLKOZÁS ELŐTT? 1930-as évek: Az antigén közvetlenül részt vesz a sokféleség kialakításában!!! Antigén inkorporációs elmélet. DE!!! Az ellenanyag szint magas azt követően is hogy az antigén már nincs jelen!!!! Antigén instrukciós elméletek: az ellenanyag a gazdaszervezet terméke, de a végleges specificitást az antigén alakítja ki as évek:Fehérjeszintézis alapjainak felfedezése: az antigen valahogyan „irányítja” a az ellenanyagok szintézisét. (direkt templát..Linus Pauling és mások) NEM MAGYARÁZZA A SZEKUNDER IMMUNVÁLASZ SORÁN TAPASZTALTAKAT

Mieloma multiplex Plazmasejt tumorok – tumorsejtek a csontvelőben Monoklonális eredetű emberi immunoglobulinok a szérumban (50-100mg/ml) Rodney Porter és Gerald Edelman 1959 – 1960 fehérje tisztítás AZ IMMUNOGLOBULINOK JELLEGZETES AMINOSAV SZERKEZETE 50 kDa Nehéz lánc 25 kDa Könnyű lánc Gél elektroforézis V ariábilis C onstans Redukció L H

AZ ELLENANYAG SOKFÉLESÉG GENETIKAI HÁTTERE VL VH A sokféleség kialakulásának mechanizmusa? Más szabályok a variábilis és konstans régiók kialakulására? S – S

Sok GÉN ( – ) V2V2V2V2C V3V3V3V3C V1V1V1V1C 1 GÉN magas szomatikus mutációs ráta a V régióban VC GénGénGénGén Protein 1 GÉN = 1 FEHÉRJE A MOLEKULÁRIS BIOLÓGIAI DOGMÁJA AZ IMMUNOGLOBULIN SZEKVENCIA JELLEGZETESSÉGE ELMÉLETEK

AZ IMMUNOGLOBULINOK MOLEKULÁRIS GENETIKÁJA Az egyetlen C régiót kódoló gén a csíravonalban el van választva a V régió génektől A V génekből többféle áll rendelkezésre Feltételezhető egy mechanizmus, amely a V és C géneket fúzionálja egy teljes immunglobulin génné Dreyer & Bennett feltételezése (1965) Egy adott izotípusú ellenanyag valószínűleg: Hogyan magyarázható az ellenanyagok kettős funkciója? A feltételezés ellentétben állt az akkor elfogadott nézettel, amennyiben a DNS (genetikai állomány) egy adott egyed minden sejtjében azonos

A Dreyer - Bennett hipotézis V V V V V V V V V V V V V A B-sejtekben a V és C géneket valamilyen mechanizmus egy teljes immunglobulin génné fúzionálja C V C A csíravonalban egyetlen C gén van (L-lánc), amely a sok V géntől távol helyezkedik Módszer a sok V gén létezésének és a V – C gén átrendeződés igazolására

Módszer Megközelítés: Specifikus próbák a különböző V régiók és a C régiók elkülönítéséhez DNS restrikciós enzimek a DNS fragmentáláshoz A csíravonalból (pl. méhlepény) és az érett B-sejtekből (pl. plazmocitóma/mielóma) származó DNS C V V V V V V V V V Csíravonal DNS C V V V V V Átrendezett DNS

** * * * B-sejt (Myeloma) VC V C Embrionális szövet V-C mRNA probe C mRNA probe * * Susumi Tonegawa kísérlete (1976)

The key experiment of Nobumichi Hozumi and Susumu Tonegawa

Sok variábilis gén van, de csak egy konstans gén VCVVV CSÍRAVONAL A V és C gének csak a B-sejtekben kerülnek egymás mellé C V VV B-SEJT KÖVETKEZTETÉSFehérje GénGénGénGén GÉN SZEGMENSEK SZOMATIKUS ÁTRENDEZŐDÉSE EGY GÉNNÉ

Az Ig gének szekvenálása tovább bonyolította a képet A csíravonal VL gének szerkezete hasonló volt a V  és and V könnyű láncok esetében A csíravonal és az átrendezett DNS nem volt azonos Honnan származik a 13 extra aminosav? CLCL VLVL ~ 95as~ 100as L CLCL VLVL ~ 95as~ 100as JLJL Az aminosavak egy része a kis számú J (Joining) régiókból származik L CLCL VLVL ~ 208as L

B-limfocita fejlődés során JkJκJκJκJκJκJκVκVκVκVκVκVκ B-sejt 1 JκJκVκVκ B-sejt 2 40 Vκ 5 Jκ5 Jκ5 Jκ5 Jκ VκVκVκVκVκVκVκVκ JκJκ JκJκ JκJκ JκJκ Csíravonal A KAPPA (κ) LÁNC GÉN SZEGMENSEK SZOMATIKUS ÁTRENDEZŐDÉSE DNS

pACk E JJ VkJk VkVκVκ P Primer RNS átirat Ck E JJVk Ck J Fehérje mRNACk J AAAA Transzláció A K-LÁNC KIFEJEZŐDÉSE A szomatikus génátrendeződés hatékonysága

Az Ig könnyű lánc átrendeződés: Menekülési út A könnyű lánc gének esetében a V – J régió közti kapcsolat kialakulásakor a megfelelő keret leolvasásnak csak 1:3 az esélye 1 helyes keret leolvasás VV JJ CC Nem-produktív átrendeződés Hasított mRNA átirat A könnyű lánc esetében új V és J elemek részvételével még egy esély van a produktív átrendeződésre

Az Ig H lánc további sokféleséggel jellemezhető VLVL JLJL CLCL L CHCH VHVH JHJH DHDH L A nehéz lánc a VH és JH gének közötti szakaszon további (0 – 8) aminosavat tartalmaz Ezek a D (DIVERSITY) régióból származnak A könnyű lánc kialakulásához 1 rekombinációs folyamatra van szükség : V L to J L A nehéz lánc kialakulásához 2 rekombinációs folyamatra van szükség D H to J H és V H to D H J H,

A B sejt fejlődés során 65 VH 6 JH VH1VH3 DJH 27 D DDD JH DD A VH GÉN SZEGMENSEK SZOMATIKUS ÁTRENDEZŐDÉSE DD VH1VH2VH3 VH1VH2 JH

AZ IMMUNOGLOBULIN GÉN SZEGMENSEK SZÁMA Variábilis (V) Diverzitás (D)0027 Kapcsoló (J)546 Gene segmentsKönnyű láncNehéz lánc kappalambda Chromosome 2 kappa light chain gene segments Chromosome 22 lambda light chain gene segments Chromosome 14 heavy chain gene segments AZ IMMUNOGLOBULIN POLIPEPTID LÁNCOKAT TÖBB GÉN SZEGMENS KÓDOLJA AZ IMMUNOGLOBULIN GÉN SZEGMENSEK ELRENDEZŐDÉSE