ADSZORPCIÓ.

Slides:



Advertisements
Hasonló előadás
Az abszorpció Fizikai abszorpció, amikor a gázkomponens csak egyszerűen oldódik az abszorbensben. Ilyenkor a komponens oldódását az egyensúlyi viszonyok,
Advertisements

2010. július 8. Sopron Hidrológiai Társaság
HATÁRFELÜLETI JELENSÉGEK
Hősugárzás Gépszerkezettan és Mechanika Tanszék.
Folyadékok vezetése, elektrolízis, galvánelem, Faraday törvényei
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
Környezeti kárelhárítás
TRANSZPORTFOLYAMATOK
Ammónium.
Nem egyensúlyi rendszerek
Környezettechnika Modellezés Biowin-nel Koncsos Tamás BME VKKT.
Vízminőségi jellemzők
Készítette: Móring Zsófia Vavra Szilvia
© Gács Iván (BME) 1/15 Energia és környezet Kéndioxid és kéntrioxid kibocsátás, csökkentésének lehetőségei.
Kémiai alapozó labor a 13. H osztály részére 2011/2012
Bioaktív komponensek kimutatása növényi mintákból
Hősugárzás.
Redoxi-reakciók, elektrokémia Vizes elektrolitok
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok
HETEROGÉN RENDSZEREK SZÉTVÁLASZTÁSA
Agrár-környezetvédelmi Modul Talajvédelem-talajremediáció KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
1 Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
Adszorpció Szilárd anyagok felületén történő komponensmegkötés (oldatokból és gázelegyekből) Szilárd felületen történő „sűrítés”
SZÁRÍTÁS Szárításon azt a műveletet értjük, mely során valamilyen nedves szilárd anyag nedvességtartalmát csökkentjük, vagy eltávolítjuk elpárologtatás.
Levegőtisztaság-védelem 5. előadás
Levegőtisztaság-védelem 3. előadás Természetes és antropogén eredetű légszennyezők. Pont-,vonal-, diffúz források.
A talaj 3 fázisú heterogén rendszer
Adsorption monomolecul ar adsorben t adsorption desorption p polymolecular condensation : adsorbed amount per unit weight of adsorbent (specific adsorption)
(Mikrokalorimetria) q: immerziós hő
Ipari adszorbensek: aktivált szén, szilikagél, alumínium-oxid.
A többlet lehet pozitív és negatív is!!!
STRONCIUM-ION MEGKÖTŐDÉSÉNEK KINETIKÁJA TERMÉSZETES AGYAGMINTÁKON
© Gács Iván (BME) 1/16 Energia és környezet Kéndioxid kibocsátás és csökkentésének lehetősége.
Biogáz Tervezet Herkulesfalva március 01..
ADSZORPCIÓS TECHNOLÓGIÁK ALKALMAZÁSA A VÍZTISZTÍTÁSBAN
Ammónium.
ADSZORPCIÓ.
Tavak, tározók rehabilitációja
ARZÉN. 50 μg/L  10 μg/L A határérték meghatározása: Maximálisan megengedhető arzén bevitel: 2 μg arzén/kg/nap Átlagos 70 kg-os testtömeget feltételezve.
EUTROFIZÁCIÓ MODELLEZÉSE: DINAMIKUS MODELLEK
Vízlágyítás.
ADSZORPCIÓ.
Ivóvíztisztítás Vízi Közmű és Környezetmérnöki Tanszék Laky Dóra.
Transzportfolyamatok felszín alatti vizekben Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék Transzportfolyamatok felszín alatti vizekben Simonffy.
Ammónium.
Vízlágyítás.
Koaguláció. Kolloid részecske és elektrosztatikus mezője Nyírási sík (shear plane): ezen belül a víz a részecskével együtt mozog Zéta-potenciál: a nyírási.
Koaguláció.
TALAJ KÉMIAI TULAJDONSÁGAI
ELVÁLASZTÁSTECHNIKA 1.
Bioszeparációs technikák ELVÁLASZTÁSTECHNIKA
Halmazállapot-változások
TÁMOP /1-2F Analitika gyakorlat 12. évfolyam Környezeti analitikai vizsgálatok Fogarasi József 2009.
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Készítette: Benedek Judit Z9XG35
Talaj összes foszfor tartalmának meghatározása
A Duna partján történt események röviden! Pillman Nikolett Schäffer Ivett.
Transzportfolyamatok felszín alatti vizekben S.Tombor Katalin Vízi Közmű és Környezetmérnöki Tanszék.
Vízszerzés-víztisztítás 9. előadás
REVERZIBILIS – MEGFORDÍTHATÓ
A Föld vízkészlete.
Fizikai alapmennyiségek mérése
A FASZÉN ELŐÁLLÍTÁSA ÉS TULAJDONSÁGAI Dr. Böddiné dr. Schróth Ágnes.
ADSZORPCIÓS MŰVELETEK
Fluidizáció Jelensége: Áramlás szemcsehalmazon
OLDATOK.
Előadás másolata:

ADSZORPCIÓ

Gázok és oldott anyagok megkötődése szilárd anyagok felületén A vízkezelési technológiákban elsősorban az oldott anyagok, közöttük is a szerves anyagok fontosak Nagy szabad energiával rendelkező felületek képesek megkötni oldott anyagokat A gázok és az oldott anyagok szilárd felületen történő megkötő- dése, azaz adszorpciója reverzibilis, tehát megfordítható folyamat Adszorbens – ahol az oldott anyag megkötődik Adszorptívum – az az anyag, mely megkötődik az adszorbensen

Vízkezelésben alkalmazott adszorbensek: Zeolitok Ioncserélő műgyanták Aktívszén Az ivóvízkezelésben esetenként a zeolitok alkalmazására is sor kerül, de elsősorban az aktívszén alkalmazása vált általánossá Az aktívszén a vízkezelésben alapvetően a következő két formában használatos: Por alakban Granulátumként Az aktívszén alapanyaga lehet: Kőszén (pl. Filtrasorb) Növényi anyagok – kókuszhéj (pl. Norit)

Magyarországon a hatvanas-hetvenes-nyolcvanas években a Műszéntermelő Vállalat állított elő vízkezelésben is alkalmazott aktívszenet – faszénből Az aktívszén nem szelektív adszorbens, tehát nagyon sokféle szervesanyag megkötésére alkalmas Az aktívszén alapvetően apoláros tulajdonságokkal rendelkezik, tehát elsősorban apoláros szerves anyagokat adszorbeál Az aktívszenek adszorpciós kapacitására jellemző fajlagos felületük. A jó minőségű aktívszenek fajlagos felülete eléri az 1000 – 1200 m2/g értéket

Az aktívszenek oldott anyag megkötő képessége (kapacitása) korlátozott. Az adszorpciós helyek telítődését követően az aktívszén több oldott anyagot nem képes megkötni Telítődés esetén két lehetőség: Kidobás Regenerálás

Aktívszén por Mérési eredmények szerint a legkörültekintőbb alkalmazás mellett is az aktívszén por adszorpciós kapacitásának csak 40 - 45 %-a kerül kihasználásra. Az aktívszén por technológiailag lehetséges alkalmazása nem teszi lehetővé az adszorpciós kapacitás nagyobb mértékű kihasználását. Felhasználási módja: a kezelésre kerülő vízbe bekeverjük Alkalmazásának szokásos koncentráció tartománya: 10–100 g/m3 Az aktívszén por nem regenerálható

Granulált aktívszén A granulált aktívszén oszlopba töltve alkalmazható. A kezelésre kerülő vizet megfelelő sebességgel bocsátjuk át a töltött oszlopon, felülről lefelé. A vízben található oldott állapotú szerves anyagok a víz átbocsátása során kapcsolatba lépnek a granulált aktívszén felületével. Hatékony tartózkodási idő az aktívszén adszorberben: 10–15 perc Az aktívszén adszorber nem szűrő!

Granulált aktívszén A granulált aktívszén oszlopba töltve alkalmazható. A kezelésre kerülő vizet megfelelő sebességgel bocsátjuk át a töltött oszlopon, felülről lefelé. A vízben található oldott állapotú szerves anyagok a víz átbocsátása során kapcsolatba lépnek a granulált aktívszén felületével. Hatékony tartózkodási idő az aktívszén adszorberben: 10–15 perc Az aktívszén adszorber nem szűrő! Aktívszén szűrő

Granulált aktívszén A granulált aktívszén oszlopba töltve alkalmazható. A kezelésre kerülő vizet megfelelő sebességgel bocsátjuk át a töltött oszlopon, felülről lefelé. A vízben található oldott állapotú szerves anyagok a víz átbocsátása során kapcsolatba lépnek a granulált aktívszén felületével. Hatékony tartózkodási idő az aktívszén adszorberben: 10–15 perc Az aktívszén adszorber nem szűrő! Regenerálás: nagynyomású vízgőzzel oxigénmentes közegben Regenerálási veszteség: 10 – 15 %

Langmuir izoterma q [mg/g] Q C [mg/L] q Q = bC 1+bC q - adszorbeált anyagmenniység Q - maximálisan adszorbeálható anyagmennyiség C - egyensúlyi koncentráció b - konstans C 1 C = + q bQ Q 1 1 1 1 = + q Q bQ C

Freundlich izoterma q = a C 1/n lg q lg C a - konstans n - konstans = lg a + lg C