LOGIKAI ÁGENSEK. Logikai ágensek A tudás reprezentációja és a tudás alkalmazását lehetővé tevő következtetési folyamatok a mesterséges intelligencia minden.

Slides:



Advertisements
Hasonló előadás
Események formális leírása, műveletek
Advertisements

Készítette: Kosztyán Zsolt Tibor
Nevezetes algoritmusok
Kondicionális Eddig: Boole-konnektívumok ( , ,  ) Ezek igazságkonnektívumok (truth-functional connectives) A megfelelő köznyelvi konnektívumok: nem.
Algebrai struktúrák.
Statisztika 2008 Az elektronikus program használata.
KÉSZÍTETTE: Takács Sándor
MESTERSÉGES INTELLIGENCIA (ARTIFICIAL INTELLIGENCE)
NEMMONOTON KÖVETKEZTETÉS (NONMONOTONIC REASONING).
Matematika a filozófiában
Szemiot i ka.
Út a beszédértéstől a szövegértésen keresztül a matematikai problémák megoldásáig Előadó: Horváth Judit.
Képességszintek.
Függvények Egyenlőre csak valós-valós függvényekkel foglalkozunk.
É: Pali is, Pista is jól sakkozik. T: Nem igaz. É: Bizonyítsd be. Mi nem igaz? T: Nem igaz, hogy Pali jól sakkozik. Nyertem É: Pali vagy Pista.
GRÁFELMÉLET Alapfogalmak 2..
Logika Miskolci Egyetem Állam- és Jogtudományi Kar
Determinisztikus programok. Szintaxis: X : Pvalt program változók E : Kifkifejezések B : Lkiflogikai kifejezések C : Utsutasítások.
A Venn-diagram használata
4. VÉGES HALMAZOK 4.1 Alaptulajdonságok
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Algebra a matematika egy ága
MI 2003/5 - 1 Tudásábrázolás (tudásreprezentáció) (know- ledge representation). Mondat. Reprezentá- ciós nyelv. Tudás fogalma (filozófia, pszichológia,
Állapottér-reprezentáljunk!
A digitális számítás elmélete
Determinisztikus véges automaták csukva nyitva m s kbsm csukva nyitva csukva nyitva csukvanyitva 1. Példa: Fotocellás ajtó s b m m= mindkét helyen k= kint.
Reprezentációs függvény. Adva egy adattípus absztrakt és konkrét specifikációja: d a = ( A, F, E a ); d c = ( C, G, E c ); A = {A 0,..., A n };C = {C 0,...,
A számfogalom bővítése
Halmazok Összefoglalás.
ISMERETALAPÚ RENDSZEREK SZAKÉRTŐ RENDSZEREK
Ismeretalapú rendszerek alaptechnikái I. Szabályalapú rendszerek.
Ismeretalapú rendszerek alaptechnikái I. Szabályalapú rendszerek.
Gráfok Készítette: Dr. Ábrahám István.
Scenáriók készítése Dr. Kollár József Magyar Coachszövetség Közhasznú Alapítvány.
Természetes és formális nyelvek Jellemzők, szintaxis definiálása, Montague, extenzió - intenzió, kategóriákon alapuló gramatika, alkalmazások.
ONTOLÓGIA és TUDÁSREPREZENTÁCIÓ Szőts Miklós Alkalmazott Logikai Laboratórium
Gazdaságstatisztika 10. előadás.
VÉGES AUTOMATA ALAPÚ TERVEZÉSI MODELL
Érvelés, bizonyítás, következmény, helyesség
Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.
Első Analitika I.1. Az állításelmélet újrafogalmazása „Protaszisz az a mondat, ami valamit valamiről állít vagy tagad.” „Lehet egyetemes, részleges (en.
Atomi mondatok FOL-ban Atomi mondat általában: amiben egy vagy több dolgot megnevezünk, és ezekről állítunk valamit. Pl: „Jóska átadta a pikk dámát Pistának”
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
A kondicionális törvényei
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
A logika centrális fogalmai a kijelentéslogikában Propositional logic Nulladrendű logika Általában Logikai igazság Logikai ekvivalencia Logikai következmény.
(nyelv-családhoz képest!!!
World Wide Web Szabó Péter Számítástechnika-technika IV. évfolyam.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Bertrand Russell ( ). Problems of Philosophy – 1912 The Principles of Mathematics – 1903 logicizmus: a matematika nem más, mint továbbfejlesztett.
Bölcsességek, aforizmák
Mesterséges Intelligencia 1. Eddig a környezet teljesen megfigyelhető és determinisztikus volt, az ágens tisztában volt minden cselekvésének következményével.
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
Algebrai struktúrák: csoport, gyűrű, test. RSA Cryptosystem/ Titkosítási rendszer Rivest, Shamir, Adelman (1978) RSA a neten leggyakrabban használt.
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’
1 „Még korunk szélhámosainak is tudósnak kell magukat színlelni, mert különben senki sem hinne nekik.” C.F. Weizsacker.
Valószínűségszámítás II.
Adatbáziskezelés. Adat és információ Információ –Új ismeret Adat –Az információ formai oldala –Jelsorozat.
TUDÁSBÁZISÚ ÁGENS Mesterséges Intelligencia 1. A tudás reprezentációja és a tudás alkalmazását lehetővé tevő következtetési folyamatok a mesterséges intelligencia.
PÁRHUZAMOS ARCHITEKTÚRÁK – 13 INFORMÁCIÓFELDOLGOZÓ HÁLÓZATOK TUDÁS ALAPÚ MODELLEZÉSE Németh Gábor.
Adalékok egy véges összegzési feladathoz
E-HÓD HÓDítsd meg a biteket!.
Logika szeminárium Barwise-Etchemendy: Language, Proof and Logic
Fordítás (formalizálás, interpretáció)
A házi feladatokhoz: 1.5: Azonosság Jelölések a feladatszám alatt:
Atomi mondatok Nevek Predikátum
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
Csoport, félcsoport, test
Előadás másolata:

LOGIKAI ÁGENSEK

Logikai ágensek A tudás reprezentációja és a tudás alkalmazását lehetővé tevő következtetési folyamatok a mesterséges intelligencia minden területének központi témája. A tudás és a következtetés sikeres viselkedést tesz lehetővé az ágens számára.

Logikai ágensek A reflexív ágens csak a vakszerencse segítségével tudta megtalálni az utat Aradról Bukaresbe. A tudásbázisú ágens képes kihasználni a nagyon általános formában leírt tudást, újra és újra összeygűjtve ennek elemeit úgy, hogy az számos célra megfelelő legyen. A tudás és a következtetés nagyon fontosak a részben megfigyelhető környezetek kezelésénél is.

Logikai ágensek A tudásbázisú ágens képes összekombinálni az általános tudást a pillanatnyi érzetekkel, hogy kikövetkeztesse a pillanatnyi állapot rejtett aspektusait, mielőtt cselekést választ. A természetes nyelv szintén igényli, hogy rejtett állapotokra következtessünk, és hogy a beszélő szándékát megismerjük.

Logikai ágensek „János egy gyémántot látott az ablakon keresztül, és szeretné (azt) megkapni”. Mire vonatkozik az „azt” szó? A gyémántra vagy az ablakra? A relatív értékekről levő ismereteink alapján a gyémántra következtetünk.

Tudásbázisú ágens

Egy tudásbázisú ágens központi eleme a tudásbázisa (knowledge base). A tudásbázis nem más mint mondatok (sentences) halmaza. A mondatokat egy nyelv segítségével fejezzük ki, amelyet tudásreprezentációs nyelvnek (knowledge representation language) nevezünk. A tudásbázisú ágens is, akárcsak a többi, bemenetként észlel valamit, és egy cselekvést ad vissza válaszként. Az ágens fenntart egy tudásbázis (TB), amely kezdetben bizonyos háttértudást (background knowledge) tartalmazhat.

Tudásbázisú ágens Egy új mondatot a KIJELENT eljárással adunk hozzá a tudásbázishoz, és a KÉRDEZ eljárással kérdezzük le a tudást. Ha az ágensprogamot meghívják, az 3 dolgot tesz. Először KIJELENT-i a tudásbázisnak, hogy mit észlelt. Másodszor, KÉRDEZ-i a tudásbázist, hogy milyen cselekvést kell végrehajtania. Harmadszor, az ágens rögzíti a kiválasztott cselekvést a KIJELENT felhasználásával, és végrehajtja a cselekvést.

A WUMPUS világ A wumpus világ (wumpus world) egy barlang, amely szobákból, és az ezeket összekötő átjárókból áll. A wumpus egy szörnyeteg, aki mindenkit megesz, ha a szobájába lép, és a barlangban lapul valahol. Az ágens le tudja lőni a wumpust, de ehhez csak egyetlen nyila van. Néhány szoba csapdát tartalmaz, amely mindenkit csapdába ejt, aki belép a szobába (kivéve a wumpust). A wumpus környezetében aranyat lehet találni.

A WUMPUS világ

A környezet definícióját a TKCSÉ leírással adjuk meg: Teljesítménymérték: az arany felvétele, a csapdába esés vagy ha a wumpus felfal, -1 minden végrehajtot cselekvés, -10 a nyíl használata. Környezet: Egy szobákból álló 4x4-es háló. Az ágens mindig az (1,1) négyzetből indul, arccal jobbra nézve. Az arany és a wumpus véletlenszerűen van elhelyezve, de nem a kiinduló négyzeten. Bármely szoba 0.2 valószínűséggel lehet csapda.

A WUMPUS világ Cselekvések: Az ágens mozoghat előre, fordulhat balra vagy jobbra 90 fokkal. Az ágens meghal ha oda lép ahol csapda van, vagy ahol a wumpus található. Az előrelépésnek nincs hatása az ágens előtt egy fal van. A Megragad cselekvést arra lehet használni hogy az ágens felvegyen egy tárgyat amely vele azonos szobában van. A Lövés cselekvést lehet használni egy nyílnak abban az irányban történő kilövésére amerre az ágens éppen áll. A nyíl addig repül, amíg el nem találja a wumpust (és megöli), vagy falnak nem ütközik. Az ágensnek csak egy nyila van.

A WUMPUS világ Érzékelők: Az ágensnek 5 érzékelője van, mindegyik egyetlen bitnyi információt ad: 1. A wumpust tartalmazó négyzetben és a közvetlenül (nem átlósan) szomszédos négyzetben az ágens bűzt érez. 2. A csapdával közvetlenül szomszédos négyzetekben az ágens szellőt érez. 3. A négyzetben ahol az arany található, az ágens csillogást érzékel. 4. Ha az ágens falnak megy, akkor ütést érzékel. 5. Ha a wumpust megölték, akkor egy sikoly hallatszik az egész barlangban.

A WUMPUS világ Az érzeteket az ágens egy 5 szimbólumot tartalmazó lista formájában kapja meg: ha egy négyzetben bűz és szellő van, de nincs ütés, csillogás vagy sikoly, akkor az ágens egy [Bűz, Szellő, Nincs, Nincs, Nincs] érzetet kap.

A WUMPUS világ Az alapvető nehézség az, hogy kezdetben az ágens semmit sem tud a környezetről, logikai következtetésekre van szüksége. Az esetek legnagyobb részében az ágens számára lehetséges az arany biztonságos megtalálása. Néhány környezetben az ágensnek választania kell, hogy hazamegy-e üres kézzel, vagy kockázatot vállal, ami vagy az aranyhoz vagy a halálhoz vezet. 21%-ban az arany egy csapdában van, vagy csapdákkal körülvett mezőkkel.

A WUMPUS világ Kezdetben az ágens tudja, hogy az (1,1)-ben tartózkodik, és hogy ez egy biztonságos hely. Az első érzékelés a [Nincs, Nincs, Nincs, Nincs, Nincs] Ebből az ágens arra következtet, hogy a szomszédos négyzetek biztonságosak.

A WUMPUS világ Mivel az (1,1)-ben nem volt se bűz, se szellő, az ágens kikövetkezteti, hogy az (1,2) és a (2,1) mezők biztonságosak. Ennek jelzésére az adott négyzetbe OK-t írunk. Tegyük fel, hogy az ágens a (2,1)- be lép.

A WUMPUS világ

Az ágens detektálja a szellőt a (2,1)-ben, tehát valamelyik szomszédok négyzetben csapdának kell lennie. A csapda nem lehet az (1,1)-ben, tehát akkor vagy a (2,2)-ben vagy a (3,1)-ben van, vagy mindkettőben (ha két csapda van, a szellő nem erősebb). A Cs? jelölés lehetséges csapdát jelez a mezőkben. Mivel csak egy biztonságos négyzet van, az ágens visszamegy az (1,1)-be, és innen tovább az (1,2)-be.

A WUMPUS világ

A (1,2)-ben az ágens a [Bűz, Nincs, Nincs, Nincs, Nincs] érzetet érzékeli. A Bűz (1,2)-ben azt jelenti, hogy a wumpus a közelben van. A wumpus nem lehet az (1,1)-ben, és nem lehet a (2,2)-ben sem (az ágens érezte volna a bűzt a (2,1)- ben). Így a wumpus csak az (1,3)-ban lehet (W!). A szellő érzet hiánya az (1,2)-ben azt jelenti, hogy nincs csapda a (2,2)-ben. De az ágens már tudja, hogy a csapda a (2,2)-ben vagy a (3,1)-ben van, ezért a csapda a (3,1)-ben van. Ez egy nehéz következtetés, mivel különböző időpontokban és különböző helyeken gyűjtött tudást használ fel, és egy érzet hiányára támaszkodva végez el egy fontos lépést.

A WUMPUS világ Az ágens bebizonyítota magának, hogy a (2,2)-ben nincs se csapda, se wumpus (OK). A (2,2)-ben az ágens ugyanúgy következtet mint eddig, és átlép a (2,3)-ba ahol detektálja a csillogást, megragadja az aranyat, és ezzel véget ér a játék.

A WUMPUS világ Bármely esetben, amikor az ágens következtetéseket von le a rendelkezésre álló információkból, a következmény garantáltan helyes lesz, ha a rendelkezésre álló információk helyesek.

Szintaxis A tudásbázis mondatokból (sentences) áll. Ezeket a mondatokat a reprezentációs nyelv szintaxisa (syntax) szerint fejezzük ki. x+y=2 jól formált mondat x2y+=nem jól formált mondat

Szemantika A logikának a nyelv szemantikáját (semantics) is definiálnia kell. A szemantika a mondatok „jelentéséről” szól. A logikában a nyelv szemantikája definiálja a mondatok igazságát (truth), minden egyes lehetséges világra (possible world) vonatkozóan. Az x+y=4 mondat igaz abban a világban ahol x=2 és y=2, és hamis abban a világban ahol x=1 és y=1.

Logikai következtetés A mondatok közötti logikai vonzat (entailment) reláció azt fejezi ki, hogy egy mondat logikusan következik egy másik mondatból. A matematikai jelölés: α |= β Az α mondat maga után vonzza a β mondatot. Mindenütt ahol α igaz, β is igaz. x+y=4 maga után vonzza a 4=x+y mondatot.

Logikai következtetés A 7.3.b ábra alapján: az ágens nem észlelt semmit az (1,1)-ben, és szellőt észlelt a (2,1)-ben. Ezek az érzetek a wumpus világra érvényes szabályokkal együtt alkotják a tudásbázist. Az ágenst az érdekli, hogy az (1,2), (2,2), (3,1) négyzetek tartalmaznak-e csapdát. Bármelyik tartalmazhat, így 2 3 =8 lehetséges modell létezik.

Logikai következtetés

A TB hamis azokban a modellekben amelyek ellentmondanak annak, amit az ágens tud. Például a TB hamis minden modellben, ahol az (1,2) tartalmaz csapdát, mivel nincs szellő az (1,1)-ben. Csak 3 olyan modell van, amelyben a TB igaz, ezeket a 7.5. ábra a modellek egy részhalmazaként mutatja.

Logikai következtetés Két lehetséges következmény: α 1 =„Nincs csapda (1,2)-ben.” α 2 =„Nincs csapda (2,2)-ben.” Minden olyan modellben ahol TB igaz, α 1 is igaz. TB |= α 1, és nincs csapda (1,2)-ben. Néhány modell amelyben a TB igaz, α 2 hamis. TB |≠ α 2, és az ágens nem tudja kikövetkeztetni, hogy nincs csapda a (2,2)-ben.

Logikai következtetés Egy következtetési eljárást, amely csak vonzat mondatokat vezet be, helyesnek (sound), vagy igazságtartónak (truth- preserving) nevezzük. Egy következtetési eljárás teljes (complete) ha képes levezetni minden vonzatmondatot.