OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.

Slides:



Advertisements
Hasonló előadás
Nitrogén vizes környezetben
Advertisements

Horváth Gábor Környezetmérnöki Kft
A szennyvíztisztítás biokinetikai problémái a gyakorlatban.
A LÉGKÖRI NYOMANYAGOK FORRÁSAI ÉS NYELŐI
Vízminőség-védelem III.
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI
Dr. Clement Adrienne Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Érzékenységvizsgálat
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
HASZNÁLT HÉVIZEK FELSZÍNI BEFOGADÓBA TÖRTÉNŐ BEVEZETHETŐSÉGE,
Környezettechnika Modellezés Biowin-nel Koncsos Tamás BME VKKT.
Innovatív szennyvíztechnológiai módszerek a felszíni vizekbe kerülő prioritás szennyezőanyag terheléseinek csökkentésére Dr. Fleit Ernő, egyetemi docens.
Vízminőségi jellemzők
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
TRANSZPORT FOLYAMATOK
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Kémiai szennyvíztisztítás
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
A levegőkörnyezet állapotának értékelése modellszámításokkal
Környezeti elemek védelme III. Vízvédelem KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek.
KÖRNYEZETVÉDELEM VÍZVÉDELEM.
Vízminőségi modellezés. OXIGÉN HÁZTARTÁS.
Produkcióbiológia, Biogeokémiai ciklusok
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Regionális szennyvíz rendszerek befogadó vízminőségére gyakorolt hatásai: Szennyvíz agglomerációkra vonatkozó EU követelmények és hazai szabályozás.
VÍZMINŐSÉGSZABÁLYOZÁS ESZKÖZEI
KÖRNYEZETI RENDSZEREK MODELLEZÉSE
SZENNYVÍZTISZTÍTÁS.
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
KÉMIAI KEZELÉS ALKALMAZÁSA A SZENNYVÍZTISZTÍTÁSBAN
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
EUTROFIZÁCIÓ MODELLEZÉSE: DINAMIKUS MODELLEK
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
VÍZFOLYÁSOK OXIGÉN HÁZTARTÁSA. SZENNYVÍZ HATÁSA (EMISSZIÓ – IMMISSZIÓ) BOI 5 emisszió nő, BOI 5 koncentráció nő, oldott O 2 koncentráció csökken (és fordítva)
Érzékenységvizsgálat
Példa: a Streeter-Phelps vízminőségi modell kalibrálása
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
-Érzékenység a paraméterek hibáira, -érzékenység a bemenő adatok hibáira Nézzünk egy egyszerű példát...
Emberi tevékenység Levegő Víz Föld Élővilág Művi környezet Ember Ökoszisztéma Települési környezet Táj.
11.ea.
Érzékenységvizsgálat a determinisztikus modell
Transzportfolyamatok II. 3. előadás
OXIGÉN HÁZTARTÁS. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2.
Visszatérve a 3 szennyező példához: Három szennyezőforrás esetén a gazdaságilag legkedvezőbb megoldás kiépítését szeretnénk hatósági eszközökkel elősegíteni.
Környezetgazdaságtan Fonyó György Vízi Közmű és Környezetmérnöki Tanszék U épület,
Felszíni víz monitoring
Környezeti rendszerek modellezése
FOLYÓVIZEK OXIGÉN HÁZTARTÁSA
Vízminőség védelem A víz az ember számára: táplálkozás, higiénia, egészségügy, közlekedés, termelés A vízben található idegen anyagok - oldott gázok -
Energia-visszaforgatás élelmiszeripari szennyvizekből
Vízszennyezés.
Zsuga Katalin – Szabó Attila: A Tisza hazai vízgyűjtőterületének ökológiai állapota, környezetvédelmi problémái Győri Katalin Dorottya geográfus III. évf.,
KÖRNYEZETI MODELLEK MI A CÉLJA A MODELLEZÉSNEK? (MIBEN SEGÍTENEK A KÖRNYEZETI MODELLEK? BONYOLULT RENDSZEREK MEGISMERÉSE (Segítenek a kölcsönhatások.
Vízminőség-védelem 10. ea.
VÍZMINŐSÉGI PROBLÉMÁK
Felszíni vizek minősége és terhelhetősége: a vízminőség-szabályozás új feltételrendszere a VKI tükrében Dr. Clement Adrienne BME VÍZI KÖZMŰ ÉS KÖRNYEZETMÉRNÖKI.
Központi Szennyvíztisztító Telep
VÍZFOLYÁSOK OXIGÉN- HÁZTARTÁSA. EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) LÉGKÖRI OXIGÉNBEVITEL O2O2 KÉTVÁLTOZÓS.
Élelmiszeripari szennyvizek tisztítása
Egy termálfürdő használt vizének vizsgálata, felszíni vízfolyásba való bevezetésének modellezése, és a fellépő környezetterhelések minimalizálásának lehetőségei.
A biológiai és a kémiai szennyvíztisztítás szimbiózisa
BME Környezettechnika Szennyvíztisztítás membrántechnológiával MBR technológia MÉRETEZÉSEK Serény József.
BAKTERIÁLIS SZENNYEZÉS
A TISZA RÉSZVÍZGYŰJTŐ - GAZDÁLKODÁSI TERV FELÜLVIZSGÁLATA AZ ORSZÁGOS VÍZÜGYI FŐIGAZGATÓSÁG ÉS A KÖZÉP – TISZA - VIDÉKI VÍZÜGYI IGAZGATÓSÁG KÖZÖS SZAKMAI.
A VÍZGYŰJTŐ-GAZDÁLKODÁSI TERVEZÉS TELEPÜLÉSI VÍZGAZDÁLKODÁSSAL KAPCSOLATOS EREDMÉNYEI, AZ INTÉZKEDÉSEK PROGRAMJA ORSZÁGOS FÓRUM A KOMMUNÁLIS SZENNYVÍZTISZTÍTÁS.
VÍZMINŐSÉG,VÍZSZENNYEZÉSEK. VÍZMOLEKULA - H 2 O 1.4 milliárd km 3, a földkéreg felszínének 71 %-át borítja víz KÜLÖNLEGES KRISTÁLYSZERKEZET  SŰRŰSÉG.
Ökológiai szempontok a szennyvíztisztításban
VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA
Mikroszkópos biológiai problémák kezelése és alkalmazása a vízbiztonsági tervekben május 09. Előadó: Fazekas Zoltán Technológiai osztályvezető.
Előadás másolata:

OXIGÉN HÁZTARTÁS

EGYSZERŰ O 2 HÁZTARTÁS SZENNYVÍZ SZERVESANYAG (BOI 5 ) HETEROTRÓF BAKTÉRIUMOK (LEBONTÁS) OXIGÉNBEVITEL O2O2

MÉRLEG SZERVESANYAG (C, N) ÜLEDÉK LÉGZÉS LÉGKÖRI DIFFÚZIÓ FOTOSZINTÉZIS MELLÉKFOLYÓK

nap O 2 fogyasztás Szerves szén (C) lebontása BOI  5 BOI 5 L Oxigén fogyasztás (BOI ~ 2.7 szerves C) L – maradék oxigén igény (BOI) - többlépcsős kinetika L0L0 L 0 = BOI  1. rendű kinetika (exponen- ciális) L = L 0 exp(-k 1 t) BOI 5 = BOI  - BOI  exp(-k 1 5)= BOI  (1-exp(-k 1 5)) BOI = L 0 - L 0 exp(-k 1 t)=L 0 (1-exp(-k 1 t))

Lebomlási tényező (k 1 ) Lebontási folyamatok sebességét jelzi, kinetikai állandó Dimenzió: 1/nap Hőmérsékletfüggő  = 1.04 T T limit 20C 1 Érvényesség ! Függ a szennyvíztisztítás mértékétől Technológiak 1 (T=20C)f Nincs tisztítás Mechanika Mechanika+kémiai kicsapatás Biológiai tiszt

Oxigén bevitel (légköri diffúzió) C < Cs C C s – telítési koncentráció Henry törvény: p = He C s p – parciális nyomás He – Henry szám f(T, P, sótartalom, stb.) T CsCs sótartalom TC s (mg/l)

Oxigén bevitel (légköri diffúzió, film elmélet) C V hh Molekuláris diff. tényező (m 2 /s) Oxigén átadási tényező (m/nap) Fajlagos oxigén beviteli tény.(1/nap) Megoldás: exponenciális (D = C S - C)

Oxigén beviteli tényező (k 2 ) Mi befolyásolja? - Áramlás jellemzői: turbulencia - Vízmélység, sebesség - Empirikus összefüggések - Érvényesség, dimenzió és kis H!!! EPA procedúrak 2  Mérés -Helyszíni nyomjelzős kísérletek illékony gáz injektálásával (etilén, propán, propilén, kripton)

Folyóra Q, v L h, C h q, L szv, C szv Feltételek: permanens (Q(t), E(t)=konst), 1D Szerves C: Vagy:levonulási idő (utazunk a folyón) L 0 számítása (1D): azonnali elkeveredés!

Folyóra Oldott oxigén: D = C s - C deficit (inhomogén lineáris diff. egyenlet) Q, v L h, C h q, L szv, C szv

Folyóra Q, v L h, C h q, L szv, C szv L x, t* LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max

Kritikus hely meghatározása Minimum:  0  2  1.5 – 2 nap Hígulás: L 0, D 0  D max, C min. Szabályozás. Iteráció. Mérés! Több szennyező: szuperponálható USA – WLA döntési modell

Több szennyvízbevezetés Q, v L h, C h q 1, L szv 1, C szv 1 x, t* L LhLh L0L0 C ChCh C0C0 Cs C min x krit, t* krit D0D0 D max LhLh q 2, L szv 2, C szv 2

BOI O2O2 TERHELÉSO 2 BEVITEL ÜLEPEDÉS Streeter & Phelps (1925, Ohio folyó)

VÍZSZENNYEZÉS: Oxigén problémák

Streeter-Phelps (1925) Továbbfejlesztések: 1.Nitrifikáció egyszerűsítve 2.Speciális eset: anaerob szakasz számítása 3.Szervesanyag oldott és ülepedő frakciók különválasztása 4.Üledék oxigén igénye 5.Nitrifikáció részletesebben 6.Fotoszintézis, légzés

Nitrifikáció egyszerűsítve 5 20 nap BOI BOI C BOI N Kjeldahl N (Szerves N, NH4-N) - L N --> mérés Két lépés: Nitrosomonas 2NH O 2  2NO H 2 O + 4H + Nitrobacter2NO O 2  2NO g O g O 2  : 4.57 g O 2 L N =4.57Kjeldahl N (N BOI -- kevés?) Feltételek: - Nitrifikáló (aerob autotróf) baktériumok, - Lúgos környezet (pH > 6), - Oxigén jelenléte, oldott oxigén > 1-2 mg/l, - Toxikus anyagok gátolják! Tisztított szvíz? - Legegyszerűbb leírás: BOI = C BOI + N BOI

Anaerob szakasz számítása Nagy terhelés Időszakos vagy állandósult anaerob állapot Anaerob lebomlás, gázképződés, fémek visszaoldódása C t* L x1x1 1. Anaerob szakasz kezdete: x 1 (C=0) 2. Anaerob szakasz: x1x1 L1L1 3. Anaerob szakasz vége: x 2 x2x2 L2L2 x2x2

Szervesanyag oldott és ülepedő frakciók különválasztása L p = f p Lpartikulált L d = f d Loldott t L0L0 ülepedés biológiai oxidáció

Üledék oxigén igénye Okok: -szennyvíz ülepedő részecskéi iszapréteget képeznek -elhalt növények, falevelek felhalmozódása -alga ülepedés -magas szervesanyag tartalmú üledék (iszap): -felső részében aerob, alsó részében anaerob lebomlási folyamatok  oxigén elvonása a vízből -lebomlás  CO 2, CH 4, H 2 S képződés -gázképződés  felszálló buborékok, iszap flotációja -esztétikai problémák Közelítés: konstans (?) megoszló terhelés (S) „SOD” S (g O 2 / m 2,nap) ÜledékS (gO 2 /m 2,nap) Települési szennyvíz(iszap) bevezetés környezetében (4) Szennyvízbevezetés alatti szakaszon 1-2 (1.5) Homokos üledék0.2-1 (0.5) Árapályos folyamtorkolati iszap (0.07)

Nitrifikáció Leíró egyenletek (CBOI, NBOI, DO): 1 2 Egyszerű N forgalom Ülepedés Denitrifikáció Növényi asszimiláció Hidrolízis, ammonifi- káció Nitrifikáció O2O2O2O2 N1 – szerves N, N2 – NH4-N N3 – NO2-N, NO3-N N1N1 N2N2 N3N3 Oldott O 2 egyenletbe: - k N 2

Fotoszintézis, légzés 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Napfény, glükóz Fotoszintézis (P mgO 2 /m 3,nap) 6CO 2 + 6H 2 0  C 6 H 12 O 6 + 6O 2 Légzés (R mgO 2 /m 3,nap) Sötétben t (h) P, R 24 t (h) O2O2 24 Cs túltelítettség CC t1t1 t2t2 PaPa PmPm Napi átlagos O 2 termelés: fotoperiódus Oldott O 2 egyenletbe (R kb Chl-a):

Oxigén vonal (ill. összes oldott oxigén deficit) számítása Deficit kezdeti értéke Szerves C lebontás Nitrifikáció Üledék oxigén igénye Fotoszintézis Vízinövényzet légzése

AZ OXIGÉN HÁZTARTÁS SZÁMÍTÁS LÉPÉSEI 1.Egy vagy több szennyező? C, N, P, üledék? 2.Modell kiválasztása 3.Alapadatok. Specifikus vonások (pl. kis H)? 4.Elkeveredés? Permanens? Kritikus tervezési állapot? 5.Hol van/lehet a kritikus hely? 6.Hasonló esetek, példák? 7.Paraméterek. Irodalom. Mérés? 8.Számítás 9.Érzékenység

Szabályozás: oxigén háztartás javítása Emisszió csökkentése: Szennyvíztisztítás Települési (kommunális szennyvíz) – BOI, kN Ipari szennyvíz: élelmiszeripar (konzervgyár, vágóhíd, húsüzem, cukorgyár, szeszipar stb – BOI,KOI, kN), vegyipar (műtrágyagyártás – NH4), energiaipar Technológia Rel. költségekTisztítási hatásfok (%)N formák (%) BerÜzemBOIÖNÖPNH 4 NO 3 Mechanika M + Kicsapatás Nagyterhelésű biológia Kisterhelésű biológia Nagyterhelésű Bio + P Kisterhelésű Bio + P NB +P +részleges N NB + P + teljes N

Szabályozás: oxigén háztartás javítása Emisszió csökkentése: Csatornázás, rákötés a meglévő rendszerre - illegális szennyvízbevezetések felszámolása Házi szennyvíztisztítók (oldómedence, szikkasztás) Állattartó telepek – BOI, NH4 Megfelelő trágyatárolás Hígtrágyás állattartás  almos trágyázás, mezőgazadasági felhasználás (újrahasznosítás) Öntisztulás, oxigén bevitel fokozása: Fenéklépcső, fenékküszöb, szűkület, bukó stb. Természetközeli (ökológiai szemléletű) mederrendezés Csobogók, kanyargós meder, hosszabb tartózkodási idő, parti zóna, gazdagabb élővilág Hipolimnion (alsó réteg) levegőztetése, cirkuláció mély tavakban Iszapkotrás, üledék eltávolítása (folyók, tavak)

Példa: Szennyvízbevezetés hatása a befogadó oldott oxigén koncentrációjára (1 D, permanens) Települési szennyvíz jellemzői:LEÉ BOI 5 koncentráció: 600 mg/l Kjeldahl N: 120 * 4.57 = 548 mg/l q = * 0.1 = m 3 /nap = 0.14 m 3 /s Befogadó vízfolyás jellemzői:Háttér koncentrációk: L h = 5 mg/l, C h = 8 mg/l T = 25 C, v = 0.5 m/s, Q = 15 m 3 /s, Cs = 8.4 mg/l k 1 = /nap, k 2 = 0.7 1/nap Kezdeti értékek: L 0 = 16.6 mg/l, D 0 = 0.47 mg/l Kritikus hely: t krit = 1.9 nap, x krit = 82 km C min = 3.6 mg/l Hígulás szerepe

Vízminőségi hatások az alkalmazott szennyvíztisztítási technológiától függően

Vízminőségi hatások, a szennyvíztisztítási technológia megválasztása Hígulás (befogadó/szennyvíz hozam aránya, Q/q) a vízminőségi hatás szempontjából (oxigén viszonyok) meghatározó.Hígulás (befogadó/szennyvíz hozam aránya, Q/q) a vízminőségi hatás szempontjából (oxigén viszonyok) meghatározó. Q/q < 100 esetén az oxigén viszonyok romlása várható, a befogadó érzékenysége nagymértékben nő.Q/q < 100 esetén az oxigén viszonyok romlása várható, a befogadó érzékenysége nagymértékben nő. A szennyvíztelepeken nitrifikáció előírása fontos az érzékeny befogadóknál (NH4-N → NO3-N).A szennyvíztelepeken nitrifikáció előírása fontos az érzékeny befogadóknál (NH4-N → NO3-N). A technológia előírásánál a befogadó érzékenységét figyelembe kell venni, nem minden esetben elegendő a meglévő (területi és technológiai) határértékek alkalmazása! (estenként pedig túl szigorú az előírás)A technológia előírásánál a befogadó érzékenységét figyelembe kell venni, nem minden esetben elegendő a meglévő (területi és technológiai) határértékek alkalmazása! (estenként pedig túl szigorú az előírás)