Biomechanika-Mozgáselemzés

Slides:



Advertisements
Hasonló előadás
Egyenes vonalú egyenletesen változó mozgás
Advertisements

11. évfolyam Rezgések és hullámok
Mozgások I Newton - törvényei
Az anyagi pont dinamikája A merev testek mechanikája
A tehetetlenség mértéke
I S A A C N E W T O N.
BIOMECHANIKA ANE/ANF, ALE/ALF, UDSZ, KIEG. 2007/2008 I. félév
A mozgások leírásával foglalkozik a mozgás okának keresése nélkül
Dr. Angyal István Hidrodinamika Rendszerek T.
Biomechanika Előadó: Kiss Rita MOGI tanszék
Mozgások Emlékeztető Ha a mozgás egyenes vonalú egyenletes, akkor a  F = 0 v = állandó a = 0 A mozgó test megtartja mozgásállapotát,
NEWTON IDEI TUDOMÁNYOS FELFEDEZÉSEK
DINAMIKAI ALAPFOGALMAK
A villamos és a mágneses tér
Newton mechanikája gravitációs elmélete
Newton törvényei.
Az Euler-egyenlet és a Bernoulli-egyenlet
2. Előadás Az anyagi pont dinamikája
Művelődés és életmód a kora újkorban
Mérnöki Fizika II előadás
Mérnöki Fizika II előadás
Fizika 2. Mozgások Mozgások.
Az erő.
BIOMECHANIKA.
BIOMECHANIKA.
Dinamika.
Összefoglalás Dinamika.
I. Törvények.
11. évfolyam Rezgések és hullámok
Isaac Newton.
Erőtan Az erő fogalma Az erő a testek kölcsönös egymásra hatása.
A Galilei-transzformáció és a Galileiféle relativitási elv
A dinamika alapjai III. fejezet
Az erő.
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
1. előadás Statika fogalma. Szerepe a tájépítészetben.
Mechanika KINEMATIKA: Mozgások leírása DINAMIKA: a mozgás oka erőhatás
5. előadás A merev testek mechanikája – III.
Pozsgay Balázs IV. évfolyamos fizikus hallgató
Mechanika területei Statika: Megmerevített szerkezetekben a ráható erőkből keletkező igénybevételek számítása Szilárdságtan: Az igénybevételekből a keresztmetszetekben.
LOGISZTIKA Előadó: Dr. Fazekas Lajos Debreceni Egyetem Műszaki Kar.
Az erőtörvények Koncsor Klaudia 9.a.
Issac Newton Gravitáció
A dinamika alapjai - Összefoglalás
Egyenes vonalú mozgások
A forgómozgás és a haladó mozgás dinamikája
Merev test egyensúlyának vizsgálata
Készült a HEFOP P /1.0 projekt keretében
Newton gravitációs törvényének és Coulomb törvényének az összehasonlítása. Sípos Dániel 11.C 2009.
A tömeg (m) A tömeg fogalma A tömeg fogalma:
Különféle mozgások dinamikai feltétele
Ütközések Ugyanazt a két testet többször ütköztetve megfigyelhető, hogy a következő összefüggés mindig teljesül: Például a 2-szer akkora tömegű test sebessége.
Isaac Newton Principia
A NEHÉZSÉGI ÉS A NEWTON-FÉLE GRAVITÁCIÓS ERŐTÖRVÉNY
Különféle erőhatások és erőtörvények
Munka, energia teljesítmény.
Készítette:Longo Paolo
Biomechanika-Mozgáselemzés
Mechanikai alapfogalmak
TÁMOP E-13/1/KONV „A 21. század követelményeinek megfelelő, felsőoktatási sportot érintő differenciált, komplex felsőoktatási szolgáltatások.
DINAMIKA (ERŐTAN) Készítette: Porkoláb Tamás. A TESTEK TEHETETLENSÉGE Miben mutatkozik meg? -Nehéz mozgásba hozni, megállítani a testeket – „ellenállnak”
1 Biomechanika- Mozgáselemzés Kiss Rita M. MTA doktor Budapest, 2014 Előadás-vázlat a BSc hallgatók.
SKALÁROK ÉS VEKTOROK.
Balthazár Zsolt Apor Vilmos Katolikus Főiskola
Történeti áttekintés.
Biomechanika-Mozgáselemzés
Az Euler-egyenlet és a Bernoulli-egyenlet
Biomechanika-Mozgáselemzés
11. évfolyam Rezgések és hullámok
Dinamika alapegyenlete
Előadás másolata:

Biomechanika-Mozgáselemzés Előadás-vázlat Kiss Rita M. Budapest, 2013

Bevezetés, definíciók

Alapcsoport-Biológiailag inspirált szerkezetek Biológiailag inspirált mérnöki tudomány egy olyan „új” tudományág, amikor az orvosi, ipari, környezet, anyagtani, gépészeti, építészeti mérnöki területen a biológiai elvek alapján új műszaki megoldásokat hoznak létre. Ez a mérnöki terület összekapcsolja az élettudományokat, a természettudományokat és a mérnöki tudományokat. Célja kettős: egyrészt új mérnöki szerkezetek létrehozása, mérnöki szerkezetek tökéletesítése, másrészt az élet jobb megértése, az életminőség javítása.

Új??? Leonardo: Tanulmányok a repülőgép és madarak repüléséről (kb. 100 tábla) Zöller F: Leonardo összes festménye és rajza, Taschen Györfi András: Ikaros repülése

Szinonimák - elnevezések „Nagy kavar” Bionika (bionics): bio (bios-természet, élet)+nics (technics-technika) JE Steel 1960 német nyelvterület: a teljes tudományterületre angol nyelvterület: orvostudományi területen, a szervek vagy testrészek mechanikus változattal való cseréje, pótlása Biomimetika (biomimikri) bio (bios- természet, élet)+mimetika (mimézis –utánzás) az élőlények felépítésének és mechanizmusainak - evolúció által évmilliókig tökéletesített természetes rendszereket lemásolva - mesterséges anyagokban, gépekben való megjelenítése

Csoportosítás Nachtigall W: Bionik alapján (német!) Antropobionika – Az emberek mozgásának tanulmányozása Neurobionika – Agy és gerincvelő információ továbbítás és feldolgozás tanulmányozása, pótlása Eljárásbionika – Biológiai folyamatok vizsgálata (fotószintézis-víz+hidrogén) Konstrukciós bionika – Biológiai konstrukciós elemek elemzése, másolása (szerkezetek tökéletesítése, építészet, gépészeti szerkezetek) Strukturális bionika – Biológiai struktúraelemek elemzése, másolása (bogács-tépőzár, moszat-fordított tetőszerkezet) Eszközbionika – Biológiai eszközök, technikák elemzése, másolása (konstrukciós és strukturális bionika) (farokuszony-hajócsavar) Mozgásbionika (Anyagbionika) – Az áramlási viszonyok és a felületi kialakítás összefüggésének vizsgálata, a folyadékokban és levegőben való mozgás közben. (cápabőr, lótusz levél, víztaszító anyagok) Szenzorbionika – Az ingerek érzékelésének vizsgálatával (denevér-tolatóradar) Infobionika – Ingerátvitel tanulmányozása (idegrendszeri továbbítás, bio-nano készülékek) Fejlődésbionika – Az evolúciós folyamatok tanulmányozása (komplex rendszerek matematikai megfogalmazása) Klímabionika – Biológiai hőérzékelés, állati építmények (termeszvárak) Molekuláris bionika – Molekulákvizsgálata (mikoelektonika, naotechnológia, speciális anyagok)

Csoportosítás (hazai-PPTE) Életminőség javítása Bionika (antropobionika, neurobionika, infobionika?) Természet másolása Biomimetika (eljárásbionika, konstrukciós bionika, strukturális bionika, eszközbionika, mozgásbionika (Anyagbionika), szenzorbionika, infobionika) Egyéb (Építészeti bionika) Konstrukciós, strukturális bionika?? Klimabionika

Definíció – Bionika (Biomechanika) Biofizika egyik ága, interdiszciplináris kutatás Mechanika (Galilei)+Biológia (Lamarck)=Biomechanika (Helmholz): az élőlények mechanikai tulajdonságaival és ezek élettani szerepével foglalkozó tudományág Webster: A biológiai speciálisan az izomaktivitásnak mechanikai alapjai és tanulmányozza az ezzel kapcsolatos törvényeket és összefüggéseket; Dorland: Élő szervezetekre alkalmazott mechanikai törvények különösen az emberi test helyváltoztatására; Nigg: Az élő rendszerek szerkezetét és működését a mechanika ismeretanyagának és módszereinek felhasználásával vizsgáló tudomány.

Definíció Elemzi mindazokat az anatómiai, élettani, pszichológiai, mechanikai kérdéseket, amelyek a külső és belső mozgások során felvetődnek; Külső biomechanika: Külső szemlélő által észlehető módon a testeknek az erő hatására a térben és időben történő helyzet és helyváltoztatását vizsgálja; Belső biomechanika: a szervezetben lezajló mozgásokat, a mozgások megszerveződésének ideg-izom koordinációját, a mozgásmintázatok kialakulását, energetikáját vizsgálja.

Történeti áttekintés

Őskor Barlangrajzok, ősi perui, ókori görög és egyiptomi kultúrák szikla-rajzai a mozgások kétdimenziós ábrázolásai (díszítés, tanítás): Mozgások megértése Törések gyógyítása Altimira-barlang

Ókor – görögök Hippokratész (Kr.e. 460-437): csonttörések és ficamok kezelése, mechanikus repozíciós korrekciós és rögzítő szerkezet terve. Peri arthón –Az ízületekről Peri agmón –A törésekről Mokhlikon –Az emelőkönyve Hippokratész scammonja (törések repozíciója)

Ókor – görögök Arisztotelész (Kr.e. 384-322), akit a kineziológia atyjának tekintünk három fő művében (Az állatok részei, Az állatok mozgása, Az állatok előrehaladása) elemezte az izmok működését, és a különböző állati mozgásokat. Az emberi mozgás vizsgálatakor megállapította, hogy a rotációs mozgásoknak fontos szerepe van a transzlációs, haladó mozgások kialakulásában (az emberi mozgás a rotációs mozgások transzlációs átalakulása). Archimédész (Kr.e. 287-212) meghatározta a vízben lebegő testekkel kapcsolatos hidrosztatikus nyomást, és foglalkozott az emberi test súlypontjának egyszerű meghatározásával. Statikai problémák, emelő elve

Ókor – rómaiak Galeneus (131-201), mint a pergemoni gladiátorok orvosa az izmok működését tanulmányozta. Az izmok mozgásáról (De motu musculorum) című művében megkülönböztette az érző és a mozgató idegeket, az agonista és az antagonista izmokat, definiálta a izomtónust, a diarthrosist és a synarthrosit, továbbá a gerincferdülést (scoliosis elnevezés). Scoliosis gyógyítása a bordapúp eltüntetése. Rendszeres boncolás állatokon és embereken. Korrekciós technika – elongatio és derotatio együttes alkalmazása

Leonardo da Vinci és kora Da Vinci (1452-1519): Rendszeres boncolást végzett (Galénosz óta először!), ami alapján, elemezte az izmok csontokon való tapadásának modellezésétés a művészi, de tudományos alaposságú ábráin – Emberi ábrák (De figura Humana) – a csontokat és az izmokat betűjelzéssel látta el. A csípőízület és a vállízület gömbcsuklóval történő modellezése is a nevéhez fűződik. Az emberi test arányairól készült rajza talán a leghíresebb biomechanikai ábra. Megjegyzések az emberi testről című munkájában az emberi mozgásokat ezen belül a járást, az állatok mozgását ezen belül a repülést a mechanika törvényei alapján elemzi. Emberi gerinc első komplex 3D modellje is a nevéhez fűződik. „A mechanika tudománya a legnemesebb és mindenek felett a leghasznosabb, látnivalón minden élőtest általa végzi mozgásait”

Leonardo da Vinci és kora Veselius (1514-1564) a brüsszeli anatómus: az emberi szervezet funkcionális anatómiáját foglalja össze Az emberi test felépítése (De Humani Corporis Fabrica) című munkájában. Híres tévedése a medence statikailag hibás ábrázolása.

Benedetti (1530-1590) Gerinc esetén elemzi a csavarás és nyújtás kapcsolatát A kar mozgásállapotainak vizsgálata Diversarum speculationum mathematicarum at physicarum liber: De mechanicis (Biomechanikai témák) Ábrák Benedetti munkáiból

Galileo Galilei (1564-1642) Pulzusszám mérése ingával Fizikai események matematikai leírása (kineziológia vizsgálatokhoz) Vízi és szárazföldi élőlények mozgásának összevetése Mérethatás A „mechanika” szó bevezetése A kísérleti ellenőrzések fontosságának Discorsi e dimonstrazioni matematiche, intorno a due nuove scienze („Két új tudomány”)

Harvey (1578-1657) 1628-ban bizonyította, hogy a vér kering, és a kamra egy irányba löki a vérmennyiséget (Pulzus mérése ingával), vérkeringés modern leírása De MotuCordis Munkájának folytatója/befejezője: Malpighi, aki a hajszál-erek hálózatának és szerepének felismerése mellett foglalkozott embriológiával, mikroszkópos vizsgálatokkal, elméleti orvoslástannal (!)

Felvilágosodás kora Descartes (1596-1651) Az emberi szervezet és a foetus képződéséről (Tractus Homine et Formatione Foetus) című művében kijelenti, hogy az állati és emberi szervezet Isten alkotta gép, ezért a mechanika módszereivel tanulmányozható. Kísérletek hiánya miatt élettani tévedések. Koordinátarendszer Descartes szellemében

Felvilágosodás kora Borelli (1608-1679), a biomechanika atyja (Borelli-díj). Az állatok mozgásáról (De Motu Animalium) című könyve az első biomechanikai indíttatású könyv, amelyben geometriai módszerekkel elemezi az állatok mozgását, szemléletes ábrákon mutatja be izmok működését. Elsőként végzett méréseket az emberi test tömegközéppontjának meg-határozására (mérleg-elv) és a munkavégző ember mechanikai elemzésére

Felvilágosodás kora Griamaldi (1618-1661) az izomkontrakciók során keletkező hangjelenségekről számolt be (Physicomathesis de lumine, coloribus, et iride, aliisque annexis), Cronne (1633-1684) az agy és az izmok közötti jeladást vizsgálta (De RationeMotusMusculorum). Stensen (1648-1686) lefektette az izom működésének mechanikai alapjait, és bizonyította, hogy a szív egy izom (Elementorum Myologiae Specium) (geológiai kutatások). Newton (1642-1727) A természet filozofiájának matematikai principiuma (Principa mathematica philosophiae naturalis) című művében megteremtette a dinamika, és a mozgásvizsgálatok alapjait. Paralellogramma módszerrel számította a mozgást létrehozó erők vektoriális összegét. Bernoulli (1667-1748), Euler (1707-1783), Coulomb (1736-1806) a XVIII. században próbálkoztak a maximális és az optimális emberi munka mennyiségének megadásával az erő, a sebesség, az idő függvényében. Euler bevezette a kritikus terhelés fogalmát, ahol a gerincoszlop stabilitását elveszti és összeomlik. A XVIII. században folytatódtak az izom működésével foglalkozó kutatások. Keill (1674-1719) megállapította, hogy az izomkontrakció során az izom rövidül, Whytt (1714-1766) bizonyította, hogy az izmokat elektromossággal ingerelni lehet. Hunter (1728-1793) összegyűjtötte és szintetizálta az eddigi izomélettani kutatások eredményeit. Galvani (1737-1798) a híres békacomb kísérletein bizonyította, hogy légköri elektromosság hatására az izmok kontrakciója létrejön. Tapasztalatait a Kommentár az elektromosság izommozgásra gyakorolt hatásáról (De Viribus Electricitatis in motu musculari commentarius) című munkájában foglalta össze.

1800 évek elejétől napjainkig A biomechanika szakosodása: MOZGÁSVIZSGÁLAT Ugrásszerű és széleskörű fejlődés: LEGFONTOSABB EREDMÉNYEK CSOPORTOSÍTVA

Testtömegközéppont meghatározása Ernst Heinrich Weber (1795-1878), Wilhelm Eduard Weber (1804-1891) és Eduard Friedrich Wilhelm Weber (1806-1871) Új módszert dolgoztak ki a test tömegközéppontjának számításra. Megállapították, hogy a tömegközéppont a járás közben függőleges irányban mozog. Izomműködés és a csontrendszer együttes szerepe a járásban (Die Mechanik der Menschlichen Gerverkzeuge). Harless (1820-1862) hullák boncolásával meghatározta egyes testszegmentumok tömegközéppontjának helyét. Fisher (1861-1917) Harless munkájának továbbfejlesztéseként megadták az egyes testszegmentumok és az egész test tömegközéppontját, definiálták az emberi test három fősíkját. (Braune is) Fick (1886-1939): Álló és fekvő testhelyzetben testközéppont különbsége Dempster (1905-1965) megismételte Braune és Fisher kísérleteit, tetemek vizsgálata alapján megadta egyes testszegmentumok térfogatát, sűrűségét, tömegközéppontját és inerciáját.

Mozgáselemzés eszközei és eredményei Ernst Heinrich Weber (1795-1878), Wilhelm Eduard Weber (1804- 1891) és Eduard Friedrich Wilhelm Weber (1806-1871) Az emberi mozgásrendszer mechanikája (Die Mechanik der menschlichen Gewerkzeuge) című munkájukban megalapozták az izomműködés mechanikai elemzését. De Bois Reymond (1818-1896) mozgás közben mérte az izmok elektromos potenciálváltozását, létrehozta az elektromiográfiás (EMG) vizsgálatokat, elektrofiziológia megalapítója (Researches on Animal Electricity). Daguerre (1787-1851) 1837-ben fedezte fel a fényképezést, amely lehetővé tette a mozgások pontos rögzítését.

Braune (1831-1892) Tömegközéppont meghatározása (Über den Schwerpunkt des menschlichen Körpers mit Rücksicht auf die Ausrüstung des deutschen Infanteristen) Modern járásanalízis, A járás és az izmok kapcsolata (Der Gang des Menschen)

Marey (1830-1904) Mozgó emberek és állatok mozgása közben készített fotók, mozgássorozatok elemzése Járáselemzés Támaszfázisban az erőmérés Kronofotográfia (flexibilis film) Vérkeringés mérése Physiologie médicale de la circulation du sang La Machine animale. Locomotion terrestre et aérienne

Muybridge (1831-1904) Marey kortársaként sorozatfényképezés- sel az állatok és az emberek mozgását elemzi. Megállapításait Az állatok mozgása (Animal Locomotion), Állatok mozgásban (Animals in Locomotion) műveiben foglalja össze. A leghíresebb megállapítása, hogy a ló vágtázása közben van egy pillanat, amikor egyik lába sem éri a földet (STANFORD).

Erőmérő rendszerek Maray pontszerű mérés Carlet (1845-1892): már a talp különböző részein méri az erőt (eloszlás mérés), és oszcillációt is mér

További kutatások Mosso (1848-1910): Az első ergograph létrehozása (izomműködés kineziológiai vizsgálataihoz). Amar ( 1879-1935): Végtagpótló protézisek fejlesztése háborús sérülteknek, a komplex protézisek fejlesztésének új korszaka, továbbá az erő-és mozgáselemzés kidolgozása protéziseknél. Steindler (1878-1959): A XX. század közepéig összegyűlt biomechanikai- kineziológiai ismeretek rendszerezése, az új életkörülmények okozta változások hatása Pauwels (1885-1980): Az izmok/inak szerepe a csontrendszerben keletkező feszültségek csökkentésében

Mai rendszerek – Optikai alapú rendszerek

Elektromágnes alapú rendszerek

Ultrahang alapú rendszerek Egyedi érzékelős Mérőhármas

Mechanikai alapismeretek

Irodalom Kocsis-Kiss-Illyés: Mozgásszervek biomechanikája, Terc Kiadó, 2006. 2. fejezet

Mechanika területei Statika: Megmerevített szerkezetekben a ráható erőkből keletkező igénybevételek számítása Szilárdságtan: Az igénybevételekből a keresztmetszetekben keletkező feszültségek, alakváltozások meg-határozása Dinamika: Mozgások jellemzése

Dinamika Kinematika: A mozgások leírásával foglalkozik. A mozgások okával (erők) nem foglalkozik Kinetika: A mozgások okaival foglalkozó tudomány

Kinematika

Definíció Az anyagi testek mozgásait a valamely viszonyítási rendszerében, idő- függvényében írja le Tömegpont (nincs alak és méret) Emberi mozgások, csak komplexen írhatók le tömegponttal, mert fontos a szegmentumok egymáshoz viszonyított helyzete ábra

Mechanikai fogalmak Pálya: amelyen a test mozog, befutott szakasza az út Elmozdulás: végpont és a kiinduló pont között, vektormennyiség (nagyság és irány) Idő Sebesség Gyorsulás Impulzus I=m v ábra

Paraméterek Távolság - idő paraméterek: Egyes pontok jellemzői Adott időpontok között megtett távolságok Idő jellegű paraméterek

Paraméterek Szögjellegű paraméterek: Relatív szög: testszegmentumok egymáshoz viszonyított helyzete Abszolút szög: testszegmentumoknak a koordináta tengelyhez viszonyított helyzete ábra Ángyán: Az emberi test mozgástana

Kinetika

Definíció A testekre ható erők hatásaival a kinetika foglalkozik. Erő olyan hatás, ami a testet mozgásállapotának megváltoztatására kényszeríti vagy alakváltozást okoz ábra

Newton törvényei I. Minden test megtartja nyugalmi állapotát vagy egyenes vonalú egyenletes mozgását mindaddig, amíg a külső erő nem kényszeríti mozgási állapotának megváltoztatására. Tehetelenségi törvény II. (dinamika alaptörvénye). A testre ható erő (F) egyenes arányos a általa létrehozott gyorsulással (a), az arányossági tényező a test tömege (m) F=m a III. (hatás – ellenhatás). Ha egy testre egy másik test erőhatást fejt ki, akkor ezzel egyidejúleg mindig fellép egy vele egyenlő nagyságú, de ellentétes irányú erő lép fel. IV. (erőhatások függetlensége) ha egy testre egyidejűleg több erő hat, akkor együttes hatásuk egyetlen erővel az eredő erővel is helyettesíthető. Az eredő erő az egyes erők vektori összege

Tömeg Teljes testtömeg Zsírtömeg (vízbemerülés, bőrredő mérés, bioelektromos impedencia mérés) Zsírmentes testtömeg Teljes izomtömeg (képletek) Testtömeg-index (BMI kg/m2)

Súlypont Az a pont, melyet alátámasztva nyugalomban marad a homogén gravitációs térben (Borelli) ábra