3.Az indukció szerepe Honnan jönnek a hipotézisek? Egyesek szerint az előzetesen összegyűjtött adatokból induktív (általánosító) következtetések útján.

Slides:



Advertisements
Hasonló előadás
Készítette: Kosztyán Zsolt Tibor
Advertisements

Események formális leírása, műveletek
Kondicionális Eddig: Boole-konnektívumok ( , ,  ) Ezek igazságkonnektívumok (truth-functional connectives) A megfelelő köznyelvi konnektívumok: nem.
Másodfokú egyenlőtlenségek
Fibonacci-sorozat.
Matematika a filozófiában
Evangelista Torricelli
Műveletek logaritmussal
A többszörös összehasonlítás gondolatmenete. Több mint két statisztikai döntés egy vizsgálatban? Mi történik az elsõ fajú hibával, ha két teljesen független.
A PEDAGÓGIAI KUTATÁS FOLYAMATA
Elméletek a tudományos módszerről
Bevezetés a tudományfilozófiába
Az empirikus ellenőrizhetőség mint kritérium
A Venn-diagram használata
MI 2003/5 - 1 Tudásábrázolás (tudásreprezentáció) (know- ledge representation). Mondat. Reprezentá- ciós nyelv. Tudás fogalma (filozófia, pszichológia,
Általános lélektan IV. 1. Nyelv és Gondolkodás.
Általános lélektan IV. Nyelv és Gondolkodás 2..
Kertész András Rákosi Csilla Debrecen, november 28.
Bizonyítási stratégiák
F. Bacon ( ) és a modern tudományok alapvetése.
A társadalomtudományi kutatás módszerei
ME-ÁJK, Bevezetés az állam és jogtudományokba 1. Előadás vázlata
A digitális számítás elmélete
Az érvelés.
AZ ÁTALAKULÓ ÉLELMISZER-GAZDASÁG FŐBB TERÜLETI, TÁRSADALMI, KÖRNYEZETI ÖSSZEFÜGGÉSEI Prof. Dr. Villányi László Szent István Egyetem Gazdaság- és Társadalomtudományi.
Aerosztatikai nyomás, LÉGNYOMÁS
Objektumorientált tervezés és programozás II. 3. előadás
Érveléstechnika 2..
A demarkációprobléma a tudományfilozófiában. Ki ért a tudományhoz? „A tudományfilozófia pont annyira hasznos a tudósnak, mint az ornitológia a madaraknak”
Buddhista logika és paradoxonok
Marketingkutatás 3. szeminárium Nagy Gábor március. 29.
2. Argumentációs szabályok (É 50−55) argumentációs szabályok meghatározzák, hogy mi mellett és mivel kell érvelni 1. a feleknek érveléssel indokolniuk.
„A tudomány kereke” Szociológia módszertan WJLF SZM BA Pecze Mariann.
Gépi tanulás Tanuló ágens, döntési fák, általános logikai leirások tanulása.
Önálló labor munka Csillag Kristóf 2004/2005. tavaszi félév Téma: „Argument Mapping (és hasonló) technológiákon alapuló döntéstámogató rendszerek vizsgálata”
Irracionális Racionalitáselméletek versus Racionális Irracionalitáselméletek MAKOG 2006 Kőhegyi Gergely BME Filozófia és Tudománytörténet Tanszék BCE Mikroökonómia.
A Boltzmann-egyenlet megoldása nem-egyensúlyi állapotban
Banyár József: Életbiztosítás Az életbiztosítások elvi megkonstruálása Banyár József.
Alapsokaság (populáció)
Tudományfilozófia Rédei Miklós
Moritz Schlick: Pozitivizmus és realizmus
A tudományfilozófia két nagy tradíciója Bevett (elfogadott) nézet Kb A logikai pozitivizmus eszmei áramlatához tartozik R. Carnap, M. Schlick,
Laudan: A tudomány áltudománya Lehetséges-e szociológiailag megmagyarázni, hogy a tudósok miért fogadják el a vélekedéseiket a világról? -> Bloor állítása.
W.V. O. Q UINE A DOLGOK ÉS HELYÜK AZ ELMÉLETEKBEN (1981) Mészáros Zsuzsanna Tudományfilozófia szem.
Arisztotelész szillogisztikája
Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.
I.7: „Világos az is, hogy mindegyik alakzatban, amikor nincs szillogizmus, és mindkettő állító, avagy tagadó, akkor egyáltalán semmi nem lesz szükségszerű.
Első Analitika I.1. Az állításelmélet újrafogalmazása „Protaszisz az a mondat, ami valamit valamiről állít vagy tagad.” „Lehet egyetemes, részleges (en.
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
A kondicionális törvényei
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
(nyelv-családhoz képest!!!
A... TANTÁRGY OKTATÁSA KÍSÉRLETI/PROJEKT FORMÁBAN Projekt/kísérlet konkrét címe Név | Tanár neve | Iskola.
Evangelista Torricelli
6.Fogalomalkotás [C. G. Hempel: A taxonómia alapjai. In: Bertalan (szerk.): A társadalomtudományi fogalmak logikája (Helikon, Budapest 2005)] 1.A definíció.
A valószínűségi magyarázat induktív jellege
7.Az elméleti redukció 1.A mechanizmus-vitalizmus vita –Szélesebb értelemben: redukálható-e a biológia a fizikára és a kémiára, vagy beszélhetünk-e autonóm.
©2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice ©2011 Hewlett-Packard Development.
XVIII. sz. , skót felvilágosodás Empirista, szkeptikus
Készítette: Ónodi Bettina 11.c
Logikus érvelés Baranyai Tamás. Logika „A logika az érvényes következtetés alapelveivel foglalkozik [...] a logika nem egyszerűen a helyes érvelés, hanem.
HŐTAN 4. KÉSZÍTETTE: SZOMBATI EDIT
A folyadékok és a gázok nyomása
Logika szeminárium Előadó: Máté András docens Demonstrátorok:
Tudományfilozófia ETR Kódok: BBN-FIL , FLN Hétfő szoba Rédei Miklós ELTE BTK LogikaTanszék
Fordítás (formalizálás, interpretáció)
Tudás- és konfirmációs paradoxonok Hempel- avagy holló-paradoxon
A kutatási projekt címe Név Oktató neve Tanulmányi intézmény neve
Az együttműködés és a tudomány iskolája
Előadás másolata:

3.Az indukció szerepe Honnan jönnek a hipotézisek? Egyesek szerint az előzetesen összegyűjtött adatokból induktív (általánosító) következtetések útján. [Az induktív következtetésekről l. Kutrovátz jegyzet, o.] Ha p, akkor q. Nem áll fenn, hogy q. Nem áll fenn, hogy p. A deduktív következtetésnek ezt a modus tollens nevű fajtáját már láttuk [előző óra 8. dia]. Egy másik fajtája: Minden konyhasó, ha lángba tesszük, a láng színét sárgára festi. Ez itt konyhasó.. Ez a konyhasó, ha lángba tesszük, a láng színét sárgára festi. Itt az általánosból következtetünk (dedukálunk) az egyesre.

Ennek a fordítottja lenne az egyesből az általánosra következtetés (indukció), ahol tehát a premisszák egyes esetekről szólnak, a konklúzió pedig általános törvény vagy elv jellegű. (A fenti só-láng példa fordítva.) Csakhogy ott nincs garantálva a következmény (pl. erős mágneses térben stb.), hiába vizsgáltunk meg már sok mintát, azok legfeljebb a valószínűséget növelhetik. Az ideális tudós a szűken vett induktivista értelmezés szerint a következőképpen járna el:

(1) összegyűjt minden tényt bármiféle válogatás vagy a jelentőségre vonatkozó előzetes (a priori) találgatás nélkül; (2) minden előzetes feltevés nélkül elemzi, összehasonlítja és osztályozza a rögzített tényeket; (3) az elemzés alapján általánosít az osztályozási vagy oksági relációkra vonatkozóan; (4) a megalapozott általánosításokból további következtetéseket von le induktív vagy deduktív módszerekkel, ellenőrzi az egészet.

(1) lehetetlen, mert még mostanig is lényegében végtelen tényt kellene összegyűjteni; mert még azt sem tudjuk előre, hogy mik a releváns tények egy speciális probléma szempontjából (további lehetséges Semmelweis-hipotézisek, népszámlálási problémák); (2) az osztályozás problémái: sokféle lehetséges (a nők osztályozása Semmelweisnél, a társadalmi struktúra kutatása), van-e természetes osztályozás (natural kind [Willard van Orman Quine: Természeti fajták. In: Forrai.- Szegedi: Tudományfilozófia; a hálón: inst.hu/tudfil/ktar/forr_ed/forr_ed.htm])?;

(3) nincs mechanikus (logikai) eljárás az indukcióra; az elméleti terminusok bevezetésére (pl. a konyhasós eset, a rúd hőtágulása vagy a kerékpár rozsdásodása empirikus és teoretikus szinten); ehhez kreatív képzeletre, intuícióra, asszociációs képességekre stb. van szükség (Kepler, Kekulé) – a tudomány objektivitása nem ebből fakadhat, hanem a kifejtett elgondolások kritikájából, ellenőrzéséből; [Karl Popper: A tudományos kutatás logikája (Európa, Budapest 1997) 1. pont] (4) de az ellenőrzés is csak korlátozott, mert – mint láttuk – a hipotéziseket csak megerősíteni tudjuk, véglegesen igazolni nem.

Következésképpen a tudomány csak egy tágabb értelemben lehet induktív.

2.A hipotézisek ellenőrzése 1.Az eset: a légnyomás Galilei: a szivópumpa csak kb. 10 m-ig jó, de miért? Torricelli feltevése a levegőtenger nyomásáról. Indirekt ellenőrzés: ha igaz, akkor a higanyt is fenn tudja tartani 760 mm magasan. A Torricelli-kísérlet.

–Pascal további ellenőrizhető következtetése: magasabban a higanyos barométer kevesebbet fog mutatni. –A Périer-kísérlet: 1500 m magasan a higanyoszlop 700 mm-nél is rövidebb (ha változatlan marad, vagy csökken, akkor Torricelli hipotézise hamisnak bizonyult volna).

2.A kísérleti ellenőrzés –Egy hipotézis ellenőrizhető következménye általában feltételes jellegű: azt állítja, hogy meghatározott feltételek mellett egy bizonyos eredményt kapunk. Ha az F feltételek megvalósulnak, akkor E esemény megtörténik. Pl. ha a barométert felfelé visszük, akkor a higanyoszlop magassága csökkeni fog (vagy ha a nők oldalsó helyzetben szülnek, akkor a gyer- mekágyi lázból eredő halálozási arány csökken). Az ilyen ellenőrizhető következmények kétféle értelemben is következtetések, egyrészt a hipotézisből vezetjük le őket, másrészt a logikai kondicionális [Kutrovátz jegyzet, 9. o.] formáját öltik.

–Az eddig példákban a meghatározott F feltételek technikailag megvalósíthatóak, befolyásolhatóak voltak, ezért képezhették a kísérleti ellenőrzés alapját. –A kvantitatív hipotézisek gyakran ilyenek, de van, amikor a feltételek nem befolyásolhatóak, ezért csak a megfigyelésekre hagyatkozhatunk (pl. változócsillagok).

3.A segédhipotézisek szerepe A hipotézisek ellenőrzése közben szinte mindig alkalmazunk bizonyos rejtett, termé- szetesnek tekintett segédfeltevéseket vagy segédhipotéziseket. Pl. a Semmelweis- probléma megoldásához azt is fel kellett tételezni, hogy a klórmeszes víz elpusztítja a mérget. Valójában tehát a megfelelő modus tollens érv a következőképpen néz ki, ha S a segédhipotézis: Ha H és S igaz, akkor K is. Viszont (ahogy tapasztaljuk) K nem igaz. H és S nem mindketten igazak.

4.Döntő kísérletek (experimentum crucis) Ha H 1 és H 2 rivális hipotézisek, és a belőlük levonható ellenőrizhető következmények kölcsönösen ellentmondanak egymásnak, akkor a megfelelő kísérlet elvégzése megcáfolhatja az egyiket és megerősítheti a másikat.

5.Ad hoc hipotézisek A H hipotézis ellenőrzésekor felhasználjuk az S 1, S 2, … S n segédhipotéziseket, és ha a K ellenőrizhető következmény negatív eredményt ad, akkor csak azt tudjuk, hogy H vagy valamelyik segédhipotézis hamis kell legyen.

–Ekkor még mindig kitalálhatunk olyan segédhi- potézis(eke)t, amely(ek) megmenti(k) a fő hipo- tézist. A Périer-kísérlet után pl. „A természet irtózik a vákuumtól” hipotézis fenntartásához helyettesíthetjük „az irtózás mindenütt azonos mértékű” segédhipotézist helyettesíthetjük „az irtózás függ a helytől” (pl. csökken a magassággal) segédhipotézist. Ez azonban ad hoc hipotézis: egyetlen célja a fő hipotézis megmentése és nem következik belőle semmi más. (Ezzel szemben pl. a levegőtenger nyomásának hipotéziséből Pascal arra következtet, hogy egy csak részben felfújt léggömb a hegytetőn jobban felfújódik, ami igaz – a másik hipotézisből ez nem következik.)

–Egy hipotézis ad hoc mivoltát természetesen csak utólag könnyű megállapítani. [A segédhipotézisek, döntő kísérletek stb. egy érdekes felfogását l. pl. Lakatos Imre: A falszifikáció és a tudományos kutatási programok metodológiája. In: Forrai-Szegedi: Tudományfilozófia; a hálón: inst.hu/tudfil/ktar/forr_ed/forr_ed.htm]