A kvantifikáció igazságfeltételei

Slides:



Advertisements
Hasonló előadás
Készítette: Kunkli Zsóka Balásházy MGSZKI Debrecen,
Advertisements

Kondicionális Eddig: Boole-konnektívumok ( , ,  ) Ezek igazságkonnektívumok (truth-functional connectives) A megfelelő köznyelvi konnektívumok: nem.
A matematikai logika alapfogalmai
5. A klasszikus logika kiterjesztése
Miről szól a Katégoriák? Cat.3: „Amikor valamit másvalamiről, mint alanyról állítunk, mindaz, amit az állítmányról mondunk, az alanyról is mondható. Pl.
Matematikai logika.
É: Pali is, Pista is jól sakkozik. T: Nem igaz. É: Bizonyítsd be. Mi nem igaz? T: Nem igaz, hogy Pali jól sakkozik. Nyertem É: Pali vagy Pista.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar
Matematikai logika A diasorozat az Analízis 1. (Mozaik Kiadó 2005.) c. könyvhöz készült. Készítette: Dr. Ábrahám István.
Logika 3. Logikai műveletek Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 24.
Barwise-Etchemendy: Language, Proof and Logic
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Logika Érettségi követelmények:
Logikai műveletek
Szillogisztikus következtetések (deduktív következtetések)
Logika 5. Logikai állítások Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 10.
Logika 6. Logikai következtetések
Az érvelés.
Halmazelmélet és matematikai logika
Halmazok Összefoglalás.
Bekő Éva Eötvös Loránd Tudományegyetem Elérhetőségem:
Magyar Coachszövetség Közhasznú Alapítvány Logikus érvelés alapjai Előadja: Dr. Kormos József.
Boole-algebra (formális logika).
Logika 2. Klasszikus logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék február 17.
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Arisztotelész szillogisztikája
Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.
I.7: „Világos az is, hogy mindegyik alakzatban, amikor nincs szillogizmus, és mindkettő állító, avagy tagadó, akkor egyáltalán semmi nem lesz szükségszerű.
Első Analitika I.1. Az állításelmélet újrafogalmazása „Protaszisz az a mondat, ami valamit valamiről állít vagy tagad.” „Lehet egyetemes, részleges (en.
Atomi mondatok FOL-ban Atomi mondat általában: amiben egy vagy több dolgot megnevezünk, és ezekről állítunk valamit. Pl: „Jóska átadta a pikk dámát Pistának”
Levezetési szabályok kvantorokra  -bevezetés (egzisztenciális általánosítás, EG)  -kiküszöbölés (univerzális megjelenítés, UI)  -kiküszöbölés (EI):
Szillogisztika = logika (következtetéselmélet)? Az An.Post.-ban, és másutt is találunk olyan megjegyzéseket, hogy minden helyes következtetés szillogizmusok.
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
A kondicionális törvényei
A logika centrális fogalmai a kijelentéslogikában Propositional logic Nulladrendű logika Általában Logikai igazság Logikai ekvivalencia Logikai következmény.
(nyelv-családhoz képest!!!
Vegyes kvantifikáció A kvantorcsere szerepe a Henkin-Hintikka játékban: l. Mixed Sentences, Kőnig’s World. Gyakorlás: 11.5 HF: 11.4, 11.9.
Logika Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék.
I. Eltér-e az alany-állítmány viselkedése az alárendelő szintagmáktól? Három helyen azt mondhatjuk, igen, ez a régi elmélet mellett szól. (Oda-vissza kérdezhetőség,
Logikai bevezető Forgács Gábor Ellenőrizzük a következő következtetéseket Egyetlen francia versenyző sem jutott be a döntőbe. Denise francia.
1. MATEMATIKA ELŐADÁS Halmazok, Függvények.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Fordítás természetes nyelvről FOL-ra Kvantifikáló kifejezések: Néhány/Egy F   x( F(x)  …) Minden G   x( G(x)  …) Két H   x  y( H(x)  H(y)  …)
Kijelentések könyve: mindegyik oldalon egy kijelentés. Egyes igaz kijelentések axiómák. Az axiómákból bizonyítható kijelentések mind igazak, és a cáfolható.
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Az informatika logikai alapjai
MI 2003/6 - 1 Elsőrendű predikátumkalkulus (elsőrendű logika) - alapvető különbség a kijelentéslogikához képest: alaphalmaz. Objektumok, relációk, tulajdonságok,
Henkin-Hintikka-játék szabályai, kvantoros formulákra, még egyszer: Aki ‘  xA(x)’ igazságára fogad, annak kell mutatnia egy objektumot, amire az ‘A(x)’
Ne felejtsük el: Legyen A tetszőleges kijelentés. Arra a kérdésre, hogy „A akkor és csak akkor igaz-e, ha te lovag vagy?” a lovagok is, a lókötők is.
Mindenki kezet fogott mindenkivel.  x  y(x kezet fogott y-nal) Biztos? Ugyanez a probléma egy másik példán: Cantor’s World, Cantor’s Sentences. Az érdekesebb.
Tananyag: Barwise-Etchemendy: Language, Proof and Logic II. Quantifiers Weblap: Fogadóóra: H 15:30-17:00, i/226.
Algebrai logika Leibniz folytatói a 18. században: Lambert, Segner és mások. 19. sz., Nagy-Britannia: Aritmetikai és szimbolikus algebra. Szimbolikus algebra:
Monadikus predikátumlogika, szillogisztika, Boole-algebra
Egzisztenciális gráfok Alfa-gráfok: kijelentéslogika Kijelentésszimbólumok: P, Q, R [elemi kijelentések] Egy ilyen lap (sheet) a P kijelentés állításával.
Kvantifikáció:  xA: az x változó minden értékére igaz, hogy…  a: értelmetlen. (Megállapodás volt: ̒a’, ̒b’, … individuumnevek.) Annak sincs értelme,
Logika.
Analitikus fa készítése Ruzsa programmal
Analitikus fák kondicionálissal
Kvantifikáló kifejezések a természetes nyelvben: ̒minden’, ̒némely’, ̒̒három’, stb. Ezek determinánsok, predikátumból (VP-ből) NP-t képeznek. Az elsőrendű.
Analitikus fák a kijelentéslogikában
Demonstrátorok: Sulyok Ági Tóth  István
Fordítás (formalizálás, interpretáció)
A házi feladatokhoz: 1.5: Azonosság Jelölések a feladatszám alatt:
Logika előadás 2017 ősz Máté András
Atomi mondatok Nevek Predikátum
Érvelések (helyességének) cáfolata
Kijelentéslogikai igazság (tautológia):
11.4. x y ((Small(x)  Large(y))  FrontOf(x,y))
Készítette: Kunkli Zsóka Balásházy MGSZKI Debrecen,
Előadás másolata:

A kvantifikáció igazságfeltételei “xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “xA(x)” akkor és csak akkor igaz, ha minden objektum kielégíti az A(x) nyitott mondatot. Mi az, hogy objektum? Honnan vegyük? Ez nyilvánvalóan világfüggő. ‘Mindenki ott volt, aki számít’ – a kontextusból világos, hogy ki az a mindenki. eleme a tárgyalási univerzumnak, eleme a tárgyalási univerzumnak vagy nem ‘x(Páros(x2) Páros(x))’ igaz, ha x lehetséges értékei a természetes számok, de hamis, ha a valós számok.

Kvantifikációs törvények A változók lehetséges értékeinek összessége: tárgyalási univerzum. A kvantifikált állítások igazsága mindig univerzumfüggő. Kvantifikációs törvények Nem mindenki kékszemű. Azaz van, aki nem kékszemű. xA(x)  xA(x) A kvantifikáció igazságszabályaiból nyilvánvalóan következik. (Ekvivalencia: bármi is legyen az A(x) mondat, egyszerre igazak.) Nincs, aki érti. Azaz mindenkire igaz, hogy nem érti. xA(x)  xA(x) Ezek a kvantifikáció De Morgan-szabályai. Helyettesítsünk mindkét szabályban A(x)-et A(x) helyére és töröljük a kettős negációkat: xA(x)  xA(x)  xA(x) xA(x) Azaz a két kvantor kölcsönösen kifejezhető egymással (a negáció segítségével). Az egzisztenciális kvantor a diszjunkcióra, az univerzális a konjunkcióra „hasonlít”.

A logikai négyzet Arisztotelészi kategorikus kijelentések kontrárius Egyetemes állító Minden, ami A, az B x(A(x)  B(x)) x(A(x)  B(x)) Egyetemes tagadó Egy A sem B x(A(x)  B(x)) x(A(x)  B(x)) kontra-diktórius szubaltern szubaltern o i Részleges tagadó Van olyan A, ami nem B x(A(x)  B(x)) x(A(x)  B(x)) Részleges állító Van olyan A, amely B x(A(x)  B(x)) x(A(x)  B(x)) szubkontrárius

Kontradiktórius párok: az egyik igaz, a másik hamis. Kontrárius párok: lehetnek egyszerre hamisak, de nem lehetnek egyszerre igazak. Szubkontrárius párok: lehetnek egyszerre igazak, de nem lehetnek egyszerre hamisak. Szubaltern kijelentés következik a fölötte levőből. Az i és e típusú kijelentések megfordíthatók, azaz ekvivalensek az A és B felcserélésével keletkező kijelentéssel. Az a típusú kijelentés gyengén megfordítható, azaz következik belőle megcserélt alannyal és állítmánnyal az i típusú kijelentés. Kivéve, ha … Kivéve, ha … Kivéve, ha … Kivéve, ha …

Arisztotelész és követői szerint az a típusú kijelentések egzisztenciális súllyal (nyomatékkal ; existential import) rendelkeznek, azaz maguk után vonják, hogy az alanyterminus (A) terjedelme nem üres. Ez vagy azt jelenti, hogy “Minden, ami A, az B”-t így kell értenünk: x(A(x)  B(x))  xA(x), vagy azt, hogy a kategorikus kijelentésekben nem is szabad üres terjedelmű terminusokat haszálni. Az első esetben baj lesz a kontradiktórius viszonyokkal. A másodikban az elmélet érvényességi köre nagyon leszűkül, s főképp sok esetben nem tudjuk előre, teljesül-e a feltétel.

Házi feladatokról általában: Mindig a SaveAs funkciót használják! A fájlnévből derüljön ki a szerző neve és a gyakorlat száma! Ezt tegyék hozzá a program által felajánlott fájlnévhez, a vezetéknevet _-lal elválasztva. Pl. Sentences9.3_Mate Ha nem a programokból származó, hanem szövegfájlt küldenek: Szám_vezeteknev.(doc, docx, odt, rtf, txt) HF.:9.5 Cél: egy Sentence-fájl, amely a Peirce’s Sentences.sen módositásával fog kijönni : Sentences 9.5_vezeteknev.sen.