Arisztotelész szillogisztikája

Slides:



Advertisements
Hasonló előadás
Weblapkészítési tudnivalók 2: Útmutató az elnevezésekhez Pék Ágnes © 2009.
Advertisements

Kondicionális Eddig: Boole-konnektívumok ( , ,  ) Ezek igazságkonnektívumok (truth-functional connectives) A megfelelő köznyelvi konnektívumok: nem.
Feltehetek egy kérdést?
Az Élet Igéje április.
A család beszélget A Kovács család összeül január elején megbeszélni családjuk pénzügyi helyzetét.
A normalizálás az adatbázis-tervezés egyik módszere
Lemondás az uralomról I.Jézus Krisztus megtiltotta a tanítványkörnek az uralkodást, úgy, ahogy azt a társadalomban gyakorolják. Mk 10:35-45 „Ekkor hozzálépett.
Az állandó határozó és a vonzat
Kódelmélet.
Miről szól a Katégoriák? Cat.3: „Amikor valamit másvalamiről, mint alanyról állítunk, mindaz, amit az állítmányról mondunk, az alanyról is mondható. Pl.
Albert Einstein idézetek.
A hatágú csillag (12 oldalú poligon) kerülete K1= (4/3)K0= 4,
A Venn-diagram használata
Barwise-Etchemendy: Language, Proof and Logic
Kétértékűség és kontextusfüggőség Kijelentéseink igazak vagy hamisak (mindig az egyik és csak az egyik) Kijelentés: kijelentő mondat (tartalma), amivel.
Szillogisztikus következtetések (deduktív következtetések)
ARISZTOTELÉSZ (Kr. e ).
Logika 5. Logikai állítások Miskolci Egyetem Állam- és Jogtudományi Kar Jogelméleti és Jogszociológiai Tanszék március 10.
Logika 6. Logikai következtetések
Lineáris algebra Mátrixok, determinánsok, lineáris egyenletrendszerek
Az érvelés.
ALAPIGE: 1Kir 3,
A locke-i azonosságkoncepció értelmezésének problémái Szívós Eszter.
ÖSSZEFOGLALÁS Egy játék és tanulságai Hitünk valósága Minden mindenben.
Objektumorientált tervezés és programozás II. 3. előadás
Buddhista logika és paradoxonok
1. Bevezetés a tárgy célja: azoknak az eszközöknek és módszereknek a megismertetése és begyakoroltatása, melyek az érvelések megértéséhez, elemzéséhez,
Halmazműveletek.
Az Élet Igéje október „Állhatatossággal fogjátok megmenteni lelketeket.” (Lk 21,19)
A létezés válasz arra a kérdésre, hogy „Hogyan van?”, a lényeg térbeli és időbeli megnyilvánulásait foglalja magába, és megnevezi az ember sajátos létmódját:
13. A zillmerezés, mint bruttó
Miért nem valóságos az idő?
Hilary Putnam: Time & Phisical Geometry Körtvélyesi László.
Volt (Phaidón 100 skk.): „… amit a legszilárdabbnak ítélek … feltételezem, hogy van valami, ami maga a szép önmagában véve, meg ami a jó, meg ami a nagy,
Érvelés, bizonyítás, következmény, helyesség
Ekvivalenciák nyitott mondatok között Két nyitott mondatot ekvivalensnek mondunk, hha tetszőleges világban ugyanazok az objektumok teszik őket igazzá.
Henkin-Hintikka játék (részben ismétlés) Alapfelállás: -Két játékos van, Én és a Természet (TW képviseli). - A játék tárgya egy zárt mondat: P. - Választanom.
I.7: „Világos az is, hogy mindegyik alakzatban, amikor nincs szillogizmus, és mindkettő állító, avagy tagadó, akkor egyáltalán semmi nem lesz szükségszerű.
Első Analitika I.1. Az állításelmélet újrafogalmazása „Protaszisz az a mondat, ami valamit valamiről állít vagy tagad.” „Lehet egyetemes, részleges (en.
Atomi mondatok FOL-ban Atomi mondat általában: amiben egy vagy több dolgot megnevezünk, és ezekről állítunk valamit. Pl: „Jóska átadta a pikk dámát Pistának”
Levezetési szabályok kvantorokra  -bevezetés (egzisztenciális általánosítás, EG)  -kiküszöbölés (univerzális megjelenítés, UI)  -kiküszöbölés (EI):
Szillogisztika = logika (következtetéselmélet)? Az An.Post.-ban, és másutt is találunk olyan megjegyzéseket, hogy minden helyes következtetés szillogizmusok.
Nem igaz, hogy a kocka vagy tetraéder. Nem igaz, hogy a kicsi és piros. a nem kocka és nem tetraéder. a nem kicsi vagy nem piros. Általában: "  (A  B)
Függvényjelek (function symbols) (névfunktorok) FOL-ban Névfunktor: olyan kifejezés, amelynek argumentumhelyeire neveket vagy in- változókat lehet írni.
A kvantifikáció igazságfeltételei
„Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy.
A kondicionális törvényei
(nyelv-családhoz képest!!!
I. Eltér-e az alany-állítmány viselkedése az alárendelő szintagmáktól? Három helyen azt mondhatjuk, igen, ez a régi elmélet mellett szól. (Oda-vissza kérdezhetőség,
Pozitív gondolatok.
Az Élet Igéje november „Könnyebb a tevének átmenni a tű fokán, mint a gazdagnak bejutni az Isten országába.” (Mt 19,24)
Mélységi bejárás Az algoritmus elve: Egy kezdőpontból kiindulva addig megyünk egy él mentén, ameddig el nem jutunk egy olyan csúcsba, amelyből már nem.
1. MATEMATIKA ELŐADÁS Halmazok, Függvények.
A kvantifikáció igazságfeltételei “  xA(x)” akkor és csak akkor igaz, ha van olyan objektum, amely kielégíti az A(x) nyitott mondatot. “  xA(x)” akkor.
Jn 14,26 A Vigasztaló pedig, a Szentlélek, akit az Atya küld az én nevemben, megtanít majd titeket mindenre, és eszetekbe juttat mindent, amit mondtam.
Gottfried Wilhelm Leibniz sz. Filozófus Matematikus
Az Élet Igéje szeptember.
Bölcsességek, aforizmák
Kijelentések könyve: mindegyik oldalon egy kijelentés. Egyes igaz kijelentések axiómák. Az axiómákból bizonyítható kijelentések mind igazak, és a cáfolható.
Máté András
Bináris kereső fák Itterátorok.
Mindenki kezet fogott mindenkivel.  x  y(x kezet fogott y-nal) Biztos? Ugyanez a probléma egy másik példán: Cantor’s World, Cantor’s Sentences. Az érdekesebb.
Memóriakezelés feladatok Feladat: 12 bites címtartomány. 0 ~ 2047 legyen mindig.
Nagyböjt III Vasárnap Á-év János 4,5-42 Jézus megérkezett Szamaria egyik városába, amelyet Szikarnak neveznek, közel ahhoz a földdarabhoz, amelyet Jákob.
Kvantifikáció:  xA: az x változó minden értékére igaz, hogy…  a: értelmetlen. (Megállapodás volt: ̒a’, ̒b’, … individuumnevek.) Annak sincs értelme,
Analitikus fa készítése Ruzsa programmal
Analitikus fák kondicionálissal
Kvantifikáló kifejezések a természetes nyelvben: ̒minden’, ̒némely’, ̒̒három’, stb. Ezek determinánsok, predikátumból (VP-ből) NP-t képeznek. Az elsőrendű.
Fordítás (formalizálás, interpretáció)
Variációk a hazugra Szókratész: Platón hazudik.
Előadás másolata:

Arisztotelész szillogisztikája An. Pr. I. 4.- „… mikor három terminus úgy viszonyul egymáshoz, hogy az utolsó egészen a középsőben van, a középső pedig egészében vagy benne van, vagy nincs benne, akkor a szélsők között szükségképpen tökéletes szillogizmus van.” Van három terminusunk, A, B és C. B a középső, valahogyan viszonyul a másik kettőhöz. Ezt variáljuk, egyelőre úgy, hogy A-t B-ről állítjuk/tagadjuk, B-t pedig C-ről. Később: ez így az első alakzat, 4*4=16 premisszapárral, amelyből itt kettőről volt szó. Ismét, de most már kimondva a „szillogizmust”: „… ha A minden B-nek, B pedig minden C-nek, akkor szükségszerű, hogy A minden C-nek állítmány; hiszen korábban megmondtuk, hogyan értjük azt, hogy ‚mindnek’.” „Hasonlóképpen ha A egy B-re sem, B viszont minden C-re, akkor A egy C-re sem vonatkozik.” Konklúzió: szümperaszma, szüllogiszmosz. Középkori kódszavak: Barbara, Celarent. B, C: sorszámok,a magánhangzók sorban a kijelentések típusára utalnak. Ennél a két szillogizmusnál a bizonyítást a kata pantosz jelentésére való hivatkozás helyettesíti.

„Ha viszont az első a középső mindegyikét követi, a középső viszont az utolsó egyikére sem vonatkozik, nem lesz szillogizmus a szélsők között; semmi sem következik ugyanis abból, ha így van, mert az is lehet, hogy az első az utolsó mindegyikére, az is, hogy egyikére sem vonatkozik,így tehát sem a ‚részlegesen’, sem az ‚egyetemesen’ nem lesz szükségszerű.” „Terminusok a ‚mindre vonatkozik’-hoz: állat-ember-ló, az ‚egyre sem’-hoz: állat-ember-kő.” Ahhoz, hogy megmutassuk: egy adott elrendezésű premisszapárból semmi sem következik , azt kell megmutatni, hogy (igaz premisszák mellett) az is lehet, hogy a, az is lehet, hogy e viszony van a két szélső között. Behelyettesítés: Az állat egyetemesen vonatkozik az emberre, azaz minden ember állat. Az ember egyetemesen nem vonatkozik a lóra, azaz egy ló sem ember. Az állat egyetemesen vonatkozik a lóra, azaz minden ló állat. Minden ember állat, egy kő sem ember, viszont egy kő sem állat. Ez a cáfolási eljárás tényfüggő-e? Nem, mert nem azon múlik, hogy a dolgok ténylegesen úgy állnak, ahogy gondoljuk, hanem azon, hogy állhatnak úgy.

„Ha pedig az egyik terminus egyetemesen, a másik részlegesen viszonyul a továbbihoz <középsőhöz>, akkor abban az esetben, ha egyetemesen a középsőről van állítva vagy tagadva, a középső pedig a kisebbről [elatton, minor, al(só) fogalom], akkor szükségképpen van tökéletes szillogizmus … Nagyobbnak [meidzon, maior, főfogalom] azt a szélsőt nevezem, amelyikben a középső van, kisebbnek meg azt,amelyik a középső alatt van.” Végeredményben nagyobb terminus az, amelyik állítmányként, kisebb, amelyik alanyként fordul elő a megfelelő premisszában. Középső (mindig) az,amelyik mindkettőben előfordul. A premisszák is a bennük előforduló terminusok után kapják a ‚nagyobb’, ill. ‚kisebb’ nevet. „Vonatkozzék ugyanis A minden B-re, B pedig némely C-re; nos, ha ’mindnek állítmánya’ a, amit először mondtunk, akkor szükségszerű, hogy A némely C-re vonatkozik. Ha pedig A egy B-re sem vonatkozik, B viszont némely C-re, akkor szükségszerű, hogy A némely C-re nem vonatkozik.” Darii, Ferio: ezek is „tökéletes” szillogizmusok. A többi esetben nincs szillogizmus (ellenpéldákkal).

I. 5. „Amikor ugyanaz az egyiknek mindegyikére, a másiknak egyikére sem vonatkozik, vagy mindkettőnek mindegyikére, vagy egyikére sem , akkor az ilyen alakzatot [szkhéma, figura] másodiknak nevzem. Középsőnek ezek közül azt mondom, amelyik mindkettőről állítva van, szélsőknek pedig azokat, amelyekről állítjuk, mégpedig nagyobbnak azt, amelyik a középső mellett van, kisebbnek azt, amelyik távolabb van tőle. A középső a szélsőkön kívül, elsőként helyezkedik el.” Végül is a nagyobb lesz a konklúzió állítmánya, a kisebb az alanya (mint az első alakzatban is) – de ezt sehol nem mondja! „ … M ne legyen egyetlen N-nek sem, viszont legyen minden X-nek állítmánya. Mivel a tagadó kijelentés megfordítható, az N nem vonatkozik egyetlen M-re sem, viszont M minden X-re vonatkozik. Így tehát N egyetlen x-re, sem, ezt ugyanis előbb megmutattuk.” Cesare visszavezetése Celarent-re, a nagyobb premissza megfordításával. C azt mutatja, hogy melyik I. alakzat-béli szillogizmusra [modusra] vezettük vissza, s meg azt, hogy hogyan.

„Ha pedig M minden N-re, de egy X-re sem vonatkozik, akkor X sem vonatkozik egyetlen N-re sem (mert ha M egy X-re sem vonatkozik, akkor X se vonatkozik egy M-re sem, viszont M minden N-re vonatkozott, tehát az X egyetlen N-re sem vonatkozik, mert megint létrejön az első alakzat). Mivel pedig a tagadó kijelentés megfordítható, N sem vonatkozik egyetlen X-re sem.” Camestres, két megfordítással visszavezetve Celarent-re. Cesare és Camestres a premisszák sorrendjében, és ennek megfelelően a két szélső terminus funkciójában különbözik. Ennek megfelelően lényegében ugyanaz a visszavezetésük, csak Camestresnél még meg kell fordítani a konklúziót is, hogy a terminusok a helyükre kerüljenek. „Ezek azonban a lehetetlenségre való visszavezetéssel is bebizonyíthatók.” Hogyan? Próbáljuk Camestres ilyen bizonyítást megkonstruálni. Tegyük fel, hogy N vonatkozik némely X-re. Akkor X is vonatkozik némely N-re. Mivel M egy X-re sem vonatkozik, M némely N-re nem vonatkozik (Ferio). Így ellentmondásra jutottuk a másik premisszával, hogy ti. M minden N-re vonatkozik. Ezzel bebizonyítottuk, hogy a két premissza igazsága esetén N egy X-re sem vonatkozik. A lehetetlenségre való visszavezetés: A {P1, P2}  K sémát akarjuk bizonyítani. Feltesszük K-t, aztán belőle és P1-ből levezetjük P2-t (vagy fordítva).

„Világos, hogy ha így áll a dolog a terminusokkal, akkor létrejön szillogizmus, de nem tökéletes; ugyanis nem egyedül a kiindulókkal, hanem másokkal együtt lesz tökéletes a szükségszerűség.” A II. alakzat még 2 érvényes modust tartalmaz (Festino, Baroco). I.6. III. alakzat: „Amikor pedig az egyik mindegyikére, a másik egyikére sem vonatkozik ugyanannak, az ilyen alakzatot nevezem harmadiknak. Középsőnek azt, amiről mind a kettő állítva van, szélsőnek pedig az állítottakat, nagyobbnak azt, amelyik távolabb van a középsőtől, kisebbnek azt, amelyik közelebb. A középsőt a szélsőkön kívülre tesszük, helyzete szerint utolsónak.” A szöveg valamilyen lineáris elrendezést mutató ábrára vonatkozhat. Nincs semmilyen általános definíciója a nagyobb-középső-kisebbnek. Az elnevezések talán a Barbarára utalnak.

„Ha egyetemesek <a premisszák>, amikor is P is, R is minden S-re vonatkozik, némely R-re szükségképpen vonatkozik a P. Mivel ugyanis az állító megfordítható, S is vonatkozik némely R-re, de mivel minden S-re vonatkozik a P, az R pedig némely S-re, szükségszerű, hogy P némely R-re vonatkozik, mert ez a szillogizmus jön létre az első alakzat révén.” Darapti Darii-ból, az a kisebb premissza részleges megfordításával. „De a lehetetlenség által, meg kiemeléssel is meg lehet csinálni a bizonyítást. Mert ha minden S-re vonatkozik mindkettő, akkor vegyünk valamit az S-ek közül, pl. N-t, erre P is, R is vonatkozik, így tehát némelyik R-re vonatkozik a P.” Ha az N univerzálé lenne, akkor ezzel az eljárással Darapti-t pontosan saját magára vezettük volna vissza. N tehát egy egyedi terminus, az eljárás pedig egzisztenciális nyomatéktól függ. Mint ahogyan Darapti érvényessége is. A III. alakzatnak 6 érvényes modusa van (a továbbiak neve: Felapton, Disamis, Datisi, Bocardo, Ferison), ebből az első kettő egzisztenciális nyomatéktól függ. Végignéztünk-e minden ersetet? Van-e negyedik alakzat?