Optimalizáció modell kalibrációja Adott az M modell, és p a paraméter vektora. Hogyan állítsuk be p -t hogy a modell kimenete az x bemenő adatokon a legjobban.

Slides:



Advertisements
Hasonló előadás
Készítette: Kosztyán Zsolt Tibor
Advertisements

ÉRDEKES PONTOK KINYERÉSE DIGITÁLIS KÉPEKEN. BEVEZETÉS  ALAPPROBLÉMA  Jellemzőpontok detektálása mindkét képen  Kinyert pontok megfeleltetése  Megfeleltetések.
Elemi függvények deriváltja
TÖBBVÁLTOZÓS FÜGGVÉNYEK FELTÉTELES SZÉLSŐÉRTÉKSZÁMÍTÁSA
Függvények Egyenlőre csak valós-valós függvényekkel foglalkozunk.
Számítógépes algebrai problémák a geodéziában
Matematika II. 4. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Illés Tibor – Hálózati folyamok
Digitális Domborzat Modellek (DTM)
DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSA
Függvénytranszformációk
Csoportosítás megadása: Δx – csoport szélesség
Számítás intervallumokkal
MI 2003/ Alakfelismerés - még egy megközelítés: még kevesebbet tudunk. Csak a mintánk adott, de címkék nélkül. Csoportosítás (klaszterezés, clustering).
Készítette: Pető László
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Mintavétel Mintavétel célja: következtetést levonni a –sokaságra vonatkozóan Mintavétel.
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Elektrotechnika 3. előadás Dr. Hodossy László 2006.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VII.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok
A GEOMETRIA MODELLEZÉSE
Év eleji információk Előadó: Hosszú Ferenc II. em Konzultáció: Szerda 9:50 – 10:35 II. em
A lokális szélsőérték és a derivált kapcsolata
Online hasonlóságelemzések: Online hasonlóságelemzések: Tapasztalatok (kukorica) hozamfüggvények levezetése kapcsán Pitlik László, SZIE Gödöllő (Forrás:
Regresszióanalízis 10. gyakorlat.
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Dinamikai rendszerek kaotikus viselkedése
108 A kísérletek célja egy speciális anyag optimális előállítási körülményeinek meghatározása volt. A célfüggvény a kihozatal %. melynek maximális értékét.
Dr. Balogh Péter Gazdaságelemzési és Statisztika Tanszék DE-AMTC-GVK
Függvények.
Aszexuális, szimpatrikus speciáció
Szögek és háromszögek.
Rekeszív meghatározása tüdőröntgenen
Lineáris programozás.
Problémás függvények : lokális optimalizáció nem használható Globális optimalizáció.
Lokális optimalizáció Feladat: f(x) lokális minimumának meghatározása 0.Adott egy kezdeti pont: x 0 1.Jelöljünk ki egy új x i pontot, ahol (lehetőleg)
TÓ FOLYÓ VÍZMINŐSÉGSZABÁLYOZÁSI PÉLDA  C H3 Célállapot (befogadó határérték) Oldott oxigén koncentráció ChChChCh  C H2  C H2 - a 13 E 1 (1-X 1 ) - a.
Optimalizáció modell kalibrációja Adott az M modell, és p a paraméter vektora. Hogyan állítsuk be p -t hogy a modell kimenete az x bemen ő adatokon a legjobban.
Matematikai eszközök a környezeti modellezésben
Környezeti rendszerek modellezése 11. előadás Optimalizáció Balogh Edina.
Környezeti rendszerek modellezése
A differenciálszámtás alapjai Készítette : Scharle Miklósné
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Lineáris regresszió.
Gazdasági matematika II. AV_PNA202 Matematika II
Határozatlan integrál
A Van der Waals-gáz molekuláris dinamikai modellezése Készítette: Kómár Péter Témavezető: Dr. Tichy Géza TDK konferencia
Rövid összefoglaló a függvényekről
Összegek, területek, térfogatok
Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Mintavételes Eljárások.
Készítette: Horváth Viktória
Módosított normál feladat
Differenciálszámítás
A derivált alkalmazása
A Függvény teljes kivizsgálása
A HATÁROZOTT INTEGRÁL FOGALMA
előadások, konzultációk
Bevezetés a méréskiértékelésbe (BMETE80ME19) 2014/
Bevezetés a méréskiértékelésbe (BMETE80ME19)
OPERÁCIÓKUTATÁS TÖBBCÉLÚ PROGRAMOZÁS. Operáció kutatás Több célú programozás A * x  b C T * x = max, ahol x  0. Alap összefüggés: C T 1 * x = max C.
Gépi tanulási módszerek
Függvények ábrázolása és jellemzése
132. óra Néhány nemlineáris függvény és függvény transzformációk
IV. konzultáció Analízis Differenciálszámítás II.
óra Néhány nemlineáris függvény és függvény transzformációk
Technológiai folyamatok optimalizálása
Nem módosítható keresések
Emlékeztető Az előző órán az adatok eloszlását Gauss-eloszlással közelítettük Célfüggvénynek a Maximum Likelihood kritériumot használtuk A paramétereket.
Rangsoroláson és pontozáson alapuló komplex mutatók
Előadás másolata:

Optimalizáció modell kalibrációja Adott az M modell, és p a paraméter vektora. Hogyan állítsuk be p -t hogy a modell kimenete az x bemenő adatokon a legjobban illeszkedjen az s megfigyelési adatsorhoz? Az eltérés x –en a modell kimenete és a mérések különbsége: e. e i = s i - M(x i,p) vagy e i =[s i – M (x i,p)] 2 stb… Az a legjobb illeszkedés s -hez ahol a hiba a lehető legkisebb. Feladat: állítsd be p –t hogy e( p) minimális legyen.

jeljelentésf ’(x)f ’’(x) lokális minimum0+ lokális maximum0- globális minimum?? globális maximum?? Optimalizáció lokális és globális szélsőértékek egy intervallumban optimalizációs elvek Szélsőérték: a pont, amihez a legnagyobb/kisebb függvényérték tartozik a környezetében. explicit megoldások ? korlátok ?

Lokális optimalizáció Feladat: f(x) lokális minimumának meghatározása 0.Adott egy kezdeti pont: x 0 1.Jelöljünk ki egy új x i pontot, ahol (lehetőleg) f (x i ) ≤ f (x i-1 ) 2.Vizsgáljuk meg a leállási kritériumot: Ha teljesül, akkor előre a 3. pontba Ha nem, akkor vissza az 1. pontba 3.Vége

Lokális optimalizáció Amire figyelni kell : A kezdőpont kijelölésétől függ a végeredmény (ha egyáltalán lesz) Az egyes módszerek konvergencia tulajdonságai eltérőek A nem megfelelő leállási kritérium következménye : Rossz eredmény / végtelen számítás

Lokális optimalizáció A módszerek csoportosítása: „Direkt” vagy „derivált mentes” módszerek : csak f (x) kell „Gradiens alapú” módszerek : f ’(x) illetve f ’’(x) is kell A módszer kiválasztásánál felmerülő kérdések: Deriválható-e egyáltalán f (x) ? Mekkora f (x) kiszámításának a költsége ? Mekkora f ’(x) kiszámításának a kötsége ?

Lokális optimalizáció Direkt módszerek : Intervallum felezés Nelder-Mead szimplex módszer ( NEM LP! ) Gradiens alapú módszerek : Legmeredekebb ereszkedés módszere

Lokális optimalizáció Intervallum felezés („Golden Section Search”) Rokon : Függvény zérushelyeinek keresése intervallum felezéssel Különbség : A minimum 2 helyett csak 3 ponttal képezhető le Zérushely : f (x 1 ) × f (x 2 ) < 0 Minimum : f (x 2 ) < f (x 1 ) és f (x 2 ) < f (x 3 )

Lokális optimalizáció x0 x1x2x3 1.A középső pontok f (x) értékei alapján jelöljük ki az új pontot 2.Mégpedig a kisebb fv. értékű középső és a szélső pont közé 3.A túloldali szélső pont kiesik 4.Az új pont kijelölésénél az aranymetszés szabályai szerint osztjuk ketté az intervallumot G ≈ x2’ x0’x1’x3’ x2’ – x1’ = G · (x3 – x2)

Nelder-Mead szimplex módszer Lokális optimalizáció 2D Szimplex n dimenzióban: n+1 csúcspontból álló poligon. Minden csúcsra kiszámítjuk f (x) -et. Műveletek: Tükrözés Zsugorítás Nyújtás

Nelder-Mead szimplex módszer Lokális optimalizáció Jellemzők: Rendkívül stabil Olcsó f (x) esetén jó Rosszul konvergál

Lokális optimalizáció Legmeredekebb ereszkedés („Steepest descent”) Csak deriválható függvények esetén alkalmazható Számtalan módszer alapját adja Valamelyik rokonát célszerű alkalmazni

Lokális optimalizáció Gradiens függvényKezdőpont

Lokális optimalizáció Metszet a legnagyobb lejtés d = - g (x1, x2) irányában Az f (x1, x2) függvény értéke a metszet mentén az α lépés- nagyság függvényében

Lokális optimalizáció A legkisebb f (x1, x2)- t eredményező lépés után Ha a minimumot választottuk, ott az irány menti derivált 0, ezért a következő lépés merőleges lesz

Lokális optimalizáció Cikk-cakk a lokális minimumig

Lokális optimalizáció Lehetőségek Hibrid módszerek létrehozása Lendület ill. adaptivitás bevezetése a konvergencia gyorsítására Kezdeti pont intelligens kiválasztása Leállási feltételek fejlesztése …