Lokális optimalizáció Feladat: f(x) lokális minimumának meghatározása 0.Adott egy kezdeti pont: x 0 1.Jelöljünk ki egy új x i pontot, ahol (lehetőleg)

Slides:



Advertisements
Hasonló előadás
Készítette: Kosztyán Zsolt Tibor
Advertisements

A Dijkstra algoritmus.
Készítette: Nagy Mihály tanár Perecsen, 2006.
Készítette: Kosztyán Zsolt Tibor
Elemi függvények deriváltja
Függvények Egyenlőre csak valós-valós függvényekkel foglalkozunk.
MI 2003/ A következőkben más megközelítés: nem közvetlenül az eloszlásokból indulunk ki, hanem a diszkriminancia függvényeket keressük. Legegyszerűbb:
Matematika II. 4. előadás Geodézia szakmérnöki szak 2010/2011. tanév Műszaki térinformatika ágazat tavaszi félév.
Geometriai transzformációk
Matematika II. 2. előadás Geodézia szakmérnöki szak 2012/2013. tanév Műszaki térinformatika ágazat őszi félév.
Digitális Domborzat Modellek (DTM)
4. VÉGES HALMAZOK 4.1 Alaptulajdonságok
DIFFERENCIÁLSZÁMÍTÁS ALKALMAZÁSA
Függvénytranszformációk
Csoportosítás megadása: Δx – csoport szélesség
Számítás intervallumokkal
MI 2003/ Alakfelismerés - még egy megközelítés: még kevesebbet tudunk. Csak a mintánk adott, de címkék nélkül. Csoportosítás (klaszterezés, clustering).
Bevezetés a digitális technikába
Készítette: Pető László
Statisztika II. VI. Dr. Szalka Éva, Ph.D..
Ideális kontinuumok kinematikája
Költségelemzés, költséggazdálkodás
Szűrés és konvolúció Vámossy Zoltán 2004
A GEOMETRIA MODELLEZÉSE
Év eleji információk Előadó: Hosszú Ferenc II. em Konzultáció: Szerda 9:50 – 10:35 II. em
Differenciál számítás
A lokális szélsőérték és a derivált kapcsolata
IRE 5 /18/ 1 Óbudai Egyetem, NIK Dr. Kutor László2011. TÁMOP – I ntelligens R endszerek E lmélete 5.
Lineáris egyenletrendszerek megoldása
Regresszióanalízis 10. gyakorlat.
Lineáris transzformáció sajátértékei és sajátvektorai
Evolúciósan stabil stratégiák előadás
Dr. Szalka Éva, Ph.D.1 Statisztika II. VI.. Dr. Szalka Éva, Ph.D.2 Regresszióanalízis.
Gráfok Készítette: Dr. Ábrahám István.
Dinamikai rendszerek kaotikus viselkedése
108 A kísérletek célja egy speciális anyag optimális előállítási körülményeinek meghatározása volt. A célfüggvény a kihozatal %. melynek maximális értékét.
Függvények.
Aszexuális, szimpatrikus speciáció
Szögek és háromszögek.
GRÁFELMÉLET Alapfogalmak 1..
Az oszd meg és uralkodj (Divide et Impera) programozási módszer
Lineáris programozás.
Problémás függvények : lokális optimalizáció nem használható Globális optimalizáció.
Optimalizáció modell kalibrációja Adott az M modell, és p a paraméter vektora. Hogyan állítsuk be p -t hogy a modell kimenete az x bemen ő adatokon a legjobban.
Optimalizáció modell kalibrációja Adott az M modell, és p a paraméter vektora. Hogyan állítsuk be p -t hogy a modell kimenete az x bemenő adatokon a legjobban.
Környezeti rendszerek modellezése 11. előadás Optimalizáció Balogh Edina.
A differenciálszámtás alapjai Készítette : Scharle Miklósné
AAO Csink László november.
A sztochasztikus kapcsolatok (Folyt). Korreláció, regresszió
Alapsokaság (populáció)
Határozatlan integrál
MI 2003/ Mi lenne a b legjobb választása? Statisztikai eljárásoknál az un. Fisher féle lineáris diszkriminancia függvény adja a legjobb szétválasztási.
Rövid összefoglaló a függvényekről
Összegek, területek, térfogatok
Készítette: Horváth Viktória
Differenciálszámítás
A derivált alkalmazása
A HATÁROZOTT INTEGRÁL FOGALMA
előadások, konzultációk
OPERÁCIÓKUTATÁS TÖBBCÉLÚ PROGRAMOZÁS. Operáció kutatás Több célú programozás A * x  b C T * x = max, ahol x  0. Alap összefüggés: C T 1 * x = max C.
Fejmozgás alapú gesztusok felismerése Bertók Kornél, Fazekas Attila Debreceni Egyetem, Informatikai Kar Debreceni Képfeldolgozó Csoport KÉPAF 2013, Bakonybél.
TÁMOP /1-2F Informatikai gyakorlatok 11. évfolyam Alapvető programozási tételek megvalósítása Czigléczky Gábor 2009.
Függvények ábrázolása és jellemzése
132. óra Néhány nemlineáris függvény és függvény transzformációk
IV. konzultáció Analízis Differenciálszámítás II.
óra Néhány nemlineáris függvény és függvény transzformációk
Technológiai folyamatok optimalizálása
Nem módosítható keresések
Informatikai gyakorlatok 11. évfolyam
Készletek – Állandó felhasználási mennyiség (folyamatos)
Előadás másolata:

Lokális optimalizáció Feladat: f(x) lokális minimumának meghatározása 0.Adott egy kezdeti pont: x 0 1.Jelöljünk ki egy új x i pontot, ahol (lehetőleg) f (x i ) ≤ f (x i-1 ) 2.Vizsgáljuk meg a leállási kritériumot: Ha teljesül, akkor előre a 3. pontba Ha nem, akkor vissza az 1. pontba 3.Vége

Lokális optimalizáció Amire figyelni kell : A kezdőpont kijelölésétől függ a végeredmény (ha egyáltalán lesz) Az egyes módszerek konvergencia tulajdonságai eltérőek A nem megfelelő leállási kritérium következménye : Rossz eredmény / végtelen számítás

Lokális optimalizáció A módszerek csoportosítása: „Direkt” vagy „derivált mentes” módszerek : csak f (x) kell „Gradiens alapú” módszerek : f ’(x) illetve f ’’(x) is kell A módszer kiválasztásánál felmerülő kérdések: Deriválható-e egyáltalán f (x) ? Mekkora f (x) kiszámításának a költsége ? Mekkora f ’(x) kiszámításának a kötsége ?

Lokális optimalizáció Direkt módszerek : Intervallum felezés Nelder-Mead szimplex módszer ( NEM LP! ) Gradiens alapú módszerek : Legmeredekebb ereszkedés módszere

Nelder-Mead szimplex módszer Lokális optimalizáció 2D Szimplex n dimenzióban: n+1 csúcspontból álló poligon. Minden csúcsra kiszámítjuk f (x) -et. Műveletek: Tükrözés Zsugorítás Nyújtás

Nelder-Mead szimplex módszer Lokális optimalizáció Jellemzők: Rendkívül stabil Olcsó f (x) esetén jó Rosszul konvergál

Lokális optimalizáció Intervallum felezés („Golden Section Search”) Rokon : Függvény zérushelyeinek keresése intervallum felezéssel Különbség : A minimum 2 helyett csak 3 ponttal képezhető le Zérushely : f (x 1 ) × f (x 2 ) < 0 Minimum : f (x 2 ) < f (x 1 ) és f (x 2 ) < f (x 3 )

Lokális optimalizáció x0 x1x2x3 1.A középső pontok f (x) értékei alapján jelöljük ki az új pontot 2.Mégpedig a kisebb fv. értékű középső és a szélső pont közé 3.A túloldali szélső pont kiesik 4.Az új pont kijelölésénél az aranymetszés szabályai szerint osztjuk ketté az intervallumot G ≈ x2’ x0’x1’x3’ x2’ – x1’ = G · (x3 – x2)

Lokális optimalizáció Legmeredekebb ereszkedés („Steepest descent”) Csak deriválható függvények esetén alkalmazható Számtalan módszer alapját adja Valamelyik rokonát célszerű alkalmazni

Lokális optimalizáció Gradiens függvényKezdőpont

Lokális optimalizáció Metszet a legnagyobb lejtés d = - g (x1, x2) irányában Az f (x1, x2) függvény értéke a metszet mentén az α lépés- nagyság függvényében

Lokális optimalizáció A legkisebb f (x1, x2)- t eredményező lépés után Ha a minimumot választottuk, ott az irány menti derivált 0, ezért a következő lépés merőleges lesz

Lokális optimalizáció Cikk-cakk a lokális minimumig

Lokális optimalizáció Lehetőségek Hibrid módszerek létrehozása Lendület ill. adaptivitás bevezetése a konvergencia gyorsítására Kezdeti pont intelligens kiválasztása Leállási feltételek fejlesztése …