Nukleinsavak és a fehérjék bioszintézise

Slides:



Advertisements
Hasonló előadás
Utazás a sejtben Egy átlagos emberi sejt magja megközelítőleg 510-15 gramm mennyiségű és 1,8-2 méter hosszúságú (3000 millió bázispárnyi) DNS-ből,
Advertisements

A fehérjék.
Sejtmag és osztódás.
III. rész DNS-RNS-fehérje prokariótákban
Nitrogén tartalmú szerves vegyületek
Fehérjék biológiai jelentősége és az enzimek
Készítette: Bacher József
Biokémia fontolva haladóknak II.
DNS replikáció DNS RNS Fehérje
DNS replikáció DNS RNS Fehérje
DNS replikáció: tökéletes másolat osztódáskor
DNS replikáció DNS RNS Fehérje
Nukleinsavak – az öröklődés molekulái
A sejtet felépítő kémiai anyagok
Természetismeret DNS RNS A nukleinsavak.
Fehérjeszintézis Szakaszai Transzkripció (átírás)
Az élő szervezeteket felépítő anyagok
Kedvenc Természettudósom:
Nukleotidok, nukleinsavak
Az Örökítőanyag.
Génexpresszió (génkifejeződés)
Új irányzatok a biológiában Fehérjék szerkezete, felosztása
MUTÁCIÓ ÉS KIMUTATÁSI MÓDSZEREI
Öröklődés molekuláris alapjai
A nukleinsavak.
A nukleinsavak.
Nukleotidok.
Nukleusz A sejt információs rendszere
Egészségügyi mérnököknek 2010
Egészségügyi mérnököknek 2010
A szénhidrátok.
Nukleotid típusú vegyületek
NUKLEINSAVAK MBI®.
SZÉNHIDRÁTOK.
A DNS szerkezete és replikációja
Nukleotid típusú vegyületek: nukleinsavak és szabad nukleotidok
A DNS szerkezete és replikációja
Nukleozidok, nukleotidok, nukleinsavak
A légzés fogalma és jelentősége
nukleoszómák (eukarióta)
Nukleinsavak énGÉN….öGÉN.
Replikáció, transzkripció, transzláció
A DNS szerkezete és replikációja
Nukleotidok anyagcseréje
Antisense RNS.
Honalapító őseink genetikai öröksége Kristóf Zoltán, 2013.
lecke A genetikai kódrendszer Gének és allélek.
DNS szintézis, replikáció Információ hordozó szerep bizonyítéka Avery-Grifith kísérlet Bakterifágos kísérlet.
Nukleinsavak Felfedezésük, típusaik Biológiai feladatuk Kémiai felépítésük Pentózok Foszforsav N-tartalmú bázisok Purin bázisokPirimidin bázisok.
Fehérjék Az élő szervezetek anyagai. Aminosavak kapcsolódása Az aminosavak egymással való összekapcsolódása: peptidkötéssel dipeptid = két aminosav kapcsolódott,
34. lecke A fehérjék felépítése a sejtben. Lényege: Lényege:  20 féle aminosavból polipeptidlánc (fehérjelánc) képződik  A polipeptidlánc aminosav sorrendjét.
Lebontó folyamatok kiegészítés. Pentóz-foszfát ciklus (Glükóz direkt oxidációja)
24. lecke Nuklein- vegyületek. A nukleotidok Összetett szerves vegyületek építőmolekulái: építőmolekulái:  5 C atomos cukor (pentóz)  Ribóz  Dezoxi-ribóz.
30. Lecke Az anyagcsere általános jellemzői
Nukleinsavak. Nukleinsavak fontossága Az élő szervezet nélkülözhetetlen, minden sejtben megtalálható szénvegyületei  öröklődés  fehérjék szintézise.
AZ ÉLET MOLEKULÁI.
Polimeráz Láncreakció:PCR, DNS ujjlenyomat
Biomérnököknek, Vegyészmérnököknek
Replikáció Wunderlich Lívius 2015.
Bio- és vegyészmérnököknek 2015
DNS replikáció DNS RNS Fehérje
22. lecke A szénhidrátok.
A nukleinsavak szerkezete
Nukleinsavak • természetes poliészterek,
A DNS replikációja Makó Katalin.
A génexpresszió és az ezzel kapcsolatos struktúrák
Hattagú heterociklusos vegyületek
A DNS szerkezete és replikációja. Mit kell „tudnia” a genetikai anyagnak? 1. Rendelkeznie kell az információ tárolásának képességével. Tehát kémiailag.
Nukleotidok.
Előadás másolata:

Nukleinsavak és a fehérjék bioszintézise

Foszforsav (foszfátion) A nukleotidok felépítése A növények →a talajból, az állatok → a táplálékból, a csontok lehetnek foszfátraktárak + purinbázis (adenin, guanin), pirimidinbázis (citozin, uracil, timin) lebontó folyamatok köztes termékeiből, a lebontott molekulák nitrogénjéből vagy a növények a talajból felvett nitrogéntartalmú sókból származik 5 C-atomot tartalmazó cukrok A szőlőcukorból minden szervezet elő tud állítani a nukleotidokat az alapegységekből enzimek kapcsolják össze megfelelő sorrendben Foszforsav (foszfátion) N-tartalmú szerves bázis pentóz

DNS bioszintézise Lényege: A DNS-molekula a sejtosztódás előtti szakaszban önmagával azonos két új DNS-molekulát tud létrehozni → megkettőződik (szemikonzervatív replikációval = félig a régi DNS-szálat megőrző másolás). Menete: DNS-molekula kettős hélixének végén az ún. szétcsavaró fehérjék (enzimek) a spirál kicsavarodását → a H-kötések felbontását; DNS-polimeráz enzim mindkét régi szálhoz új nukleotidokból álló másolatot kapcsol→ a két szálon eltérő a szintézis iránya: 3’-5’ irányban leolvasott szálon (templáton) összefüggő új DNS-szál szintetizálódik, az 5’-3’ irányban leolvasott szál mentén töredékek képződnek (ezeket a ligáz enzim kapcsolja össze); a kész új DNS-molekulán az enzimek ellenőrzést végeznek: a hibás párosodásokat kijavítják vagy kivágják.

RNS bioszintézise Lényege: az RNS-molekula a DNS aktív szálának egy kicsiny – többnyire csak egy fehérje vagy RNS bioszintézisért felelős szakaszáról képződik. Menete: a DNS megfelelő szakasza enzimek hatására szétcsavarodik, a hidrogénkötések felnyílnak, enzim a nukleotidokból új szálat képez, az a DNS aktív szála nukleotidsorrendjének megfelelően (a kiegészítő szálhoz hasonlóan) új szál készül az RNS-polimeráz segítségével. A létrejött RNS-molekula leválik, a DNS összezárul. A képződött RNS abban tér el a DNS kiegészítő szálától, hogy sokkal rövidebb – hiszen a DNS egy darabjáról készül – timin helyett uracil nevű bázist tartalmaz, és dezoxiribóz helyett ribóz van benne. A DNS-RNS kettős lánc kevésbé stabil, mint a DNS-DNS kettős lánc, ezért a kész RNS leválik, s a DNS visszazárul.

Nukleinsavak

Nukleinsavak: DNS = dezoxiribonukleinsav Felépítése: foszforsav dezoxiribóz szerves bázis: purinbázis: adenin, guanin purimidinbázis: citozin, timin

Nukleinsavak DNS gén kémiai kód

Kromoszóma Benne a DNS szuperhélix formában van.

Nukleinsavak DNS replikációja (megkettőződése)

Fehérjék bioszintézise Lényege: Az aminosavsorrend kialakítása fajra, egyedre, sejtre, sejtalkotókra jellemző. Helye: a sejt riboszómáin. Az aminosavak felépítése a fehérjék építőkövei az aminosavak, az aminosavak származhatnak fehérjék lebontásából, felesleges aminosavak nitrogénjének a lebontó folyamatok során keletkezett szénláncdarabok összeépítéséből, Növényekben a talajból felvett vagy redukált nitrogénvegyületek és a glükóz bontásból keletkező szénvegyületek összekapcsolásával;

kialakul a polipeptidlánc A fehérjéket az alapegységekből enzimek kapcsolják össze megfelelő sorrendben: Információ a DNS aktív szálán nukleotidhármasokban (bázistripletekben) átírás (transzkripció) mRNS-re (hírvivő RNS) az mRNS elszállítja az információt a riboszómák felszínére (a fehérjeszintézis helyszíneire) az aktivált aminosavakat a tRNS-ek szállítják a riboszómákhoz 64 antikodon 61 aminosavat jelez, (ebből 1. a startjel = lánckezdő aminosav jel), 3 stopjel =lánczáró mRNS nukleotidsorrendjének átfordítása = transzlációja az fehérjék aminosavsorrendjének nyelvére – ezt a tRNS végzi A tRNS az mRNS kodonjainak megfelelő aminosavakat hordoz az aminosavak a megfelelő sorrendben peptidkötésekkel kapcsolódnak össze kialakul a polipeptidlánc kód kodon antikodon

RNS = ribonukleinsav

RNS = ribonukleinsavak Képződésük: a DNS-molekulák aktív (élő) száláról képződnek Biológiai feladatuk: a DNS-ben tárolt információnak a fehérjeképzés helyére történő továbbítása és a fehérjeszintézis közvetlen megvalósítása. (Egyes vírusoknál örökítőanyagként is szerepelhet, sőt ribozimek biolkatalizátorként a is működhetnek.) Méretükre, felépítésükre jellemző: tömegük jóval kisebb, mint a DNS egy polinukleotid-lánc alkotja a molekuláit pentózuk: ribóz szerves bázisaik: adenin (A), guanin (G), citozin (C) és uracil (U) lehet. Kapcsolódásuk: A=U G=C foszforsav

RNS = ribonukleinsav tRNS (transzfer = szállító RNS) az aktivált aminosavakat szállítja a fehérjeszintézis helyére lóhere alakú molekula 61-féle változata van Specifikus minden kodonnak, ill. aminosavnak saját tRNS-e van bázishármasa az antikodon (az mRNS kodonjával komplomenter) ribozim