11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI. 11.1. A maghéj modell.

Slides:



Advertisements
Hasonló előadás
Készítette: Bráz Viktória
Advertisements

A H-atom kvantummechanikai tárgyalása Tanulságok 1.
7. A MOLEKULÁK REZGŐ MOZGÁSA
E képlet akkor ad pontos eredményt, ha az exponenciális tényező kitevőjében álló >>1 feltétel teljesül. Ha a kitevőben a potenciálfal vastagságát nanométerben,
3. A HIDROGÉNATOM SZERKEZETE
9. Fotoelektron-spektroszkópia
1. A KVANTUMMECHANIKA AXIÓMÁI
Mit jelent az, hogy NMR spektroszkópia ?
Erőállandók átvihetősége
Szilárd anyagok elektronszerkezete
Mágneses módszerek a műszeres analitikában
Tartalom Az atom fogalma, felépítése Az atom elektronszerkezete
Kémiai kötések Molekulák
Spektroszkópiai alapok Bohr-féle atommodell
10. LÉZEREK, LÉZERSPEKTROSZKÓPIA. Lézer: erős, párhuzamos fénysugarat adó fényforrás. Light Amplification by Stimulated Emission of Radiation L ASER.
3. A TÖBBELEKTRONOS ATOMOK SZERKEZETE
Ami kimaradt....
A H-atom kvantummechanikai tárgyalása Tanulságok
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
Szimmetriaelemek és szimmetriaműveletek (ismétlés)
2. A HIDROGÉNATOM SZERKEZETE
11. AZ ATOMMAG ELEKTRONÁLLAPOTAI
5. OPTIKAI SPEKTROSZKÓPIA
6. A MOLEKULÁK REZGŐ MOZGÁSA A két tömegpontból álló harmónikus oszcillátor.
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
3. A HIDROGÉNATOM SZERKEZETE A hidrogénatom Schrödinger-egyenlete.
3. Ionkristály lézerek A lézerközeg: fémoxid v. fémhalogenid, amelyben a fémionok kis részét másik fémion („szennyező”) helyettesíti Egykristály: kis spektrális.
Lézerspektroszkópia Előadók: Kubinyi Miklós Grofcsik András
1 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
11 6. A MOLEKULÁK FORGÁSI ÁLLAPOTAI A forgó molekula Schrödinger-egyenlete.
Kémiai anyagszerkezettan Bevezetés
A H-atom kvantummechanikai tárgyalása Tanulságok
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
S UGÁRZÁS KÖLCSÖNHATÁSA AZ ANYAGGAL XPS MÓDSZEREK TÍPUSAI ÉS ANALITIKAI ALKALMAZÁSAI C.S. Fadley - X-ray photoelectron spectroscopy: Progess and perspectives,
Tartalom Az atom felépítése Az atom elektronszerkezete
Kómár Péter, Szécsényi István
A H-atom kvantummechanikai tárgyalása Tanulságok
6. A MOLEKULÁK FORGÓMOZGÁSA
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
Kubinyi Miklós ) Lézerspektroszkópia Kubinyi Miklós )
A H-atom kvantummechanikai tárgyalása Tanulságok
3. A HIDROGÉNATOM SZERKEZETE
Mit tudunk már az anyagok elektromos tulajdonságairól
Nukleáris módszerek a kémiai és anyagszerkezet vizsgálatokban
Z.B. Alfassi: Chemical Analysis by Nuclear Methods
Elektrongerjesztési (UV-látható) spektroszkópia
Az elektronburok szerkezete
Kémiai kötések Kémiai kötések.
Az atom szerkezete Készítette: Balázs Zoltán BMF. KVK. MTI.
6. A MOLEKULÁK REZGŐ MOZGÁSA
Az anyagszerkezet alapjai
UV -látható spektroszkópia.
Atom - és Elektronpályák
A radioaktivitás és a mikrorészecskék felfedezése
A kvantum rendszer.
Fémkomplexek lumineszcenciája
Az atommag alapvető tulajdonságai
Spektroszkópia Analitikai kémiai vizsgálatok célja: a vizsgálati
Mágneses rezonancia módszerek: spinek tánca mágneses mezőben
Kémiai anyagszerkezettan 1 Előadó: Kubinyi Miklós Tel:
1 11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI A maghéj modell.
Nagyfeloldású Mikroszkópia Dr. Szabó István 12. Raman spektroszkópia TÁMOP C-12/1/KONV projekt „Ágazati felkészítés a hazai ELI projekttel.
12. MÁGNESES MAGREZONANCIA
AZ ATOM FELÉPÍTÉSE.
I. Az anyag részecskéi Emlékeztető.
Analitikai Kémiai Rendszer
A H-atom kvantummechanikai tárgyalása Tanulságok
DEe >> DEvib >> DErot
11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI
Az elektronburok szerkezete
Előadás másolata:

11. AZ ATOMMAGOK ENERGIAÁLLAPOTAI

11.1. A maghéj modell

Maghéj modell

Nukleonok spinből származó impulzusmomentuma (A proton és a neutron 1/2 spinű részecske, mint az elektron.)

Maghéj modell Az atommag kvantumállapotainak leírására használt modell Hasonlít a többelektronos atomok szerkezetének tárgyalásánál használt modellre, amelyekből az elektronhéjak adódnak. (Bonyolultabb annál, mivel nukleonból kétféle van.)

Atommagok kvantumállapotának jellemzése (A maghéj modell szerinti tárgyalás eredménye) A magok állapotát két kvantumszám jellemzi: - I : magspin-kvantumszám - M I : mag mágneses kvantumszám

I: magspin-kvantumszám attól függ, hogy a mag rendszáma és tömegszáma páros vagy páratlan. M I : mag mágneses kvantumszám : M I = I, I-1, …, -I. rendszámtömegszámI lehetséges értékei párospároscsak 0 lehet párospáratlan“félegész” számok (1/2, 3/2, 5/2…) páratlanpárosegész számok (1,2,3…) páratlanpáratlan“félegész” számok (1/2, 3/2, 5/2…) A magkvantumszámok lehetséges értékei

Az atommag energiája Mágneses tér távollétében: csak I-től függ, M I szerint degenerált Mágneses térben: a degenerált szintek M I szerint felhasadnak.

Atommagok gerjesztése Mössbauer effektus: I változik, gerjesztés gamma-fotonnal Mágneses magrezonancia: M I változik (mágneses térben!), gerjesztés rádióhullámú fotonnal

Rudolf Ludwig Mössbauer "for his researches concerning the resonance absorption of gamma radiation and his discovery in this connection of the effect which bears his name"

"for their development of new methods for nuclear magnetic precision measurements and discoveries in connection therewith" Felix BlochEdward Mills Purcell

11.2 A Mössbauer-effektus Az I magspin-kvantumszám megváltozásával járó átmenet. - Nagy energiájú,  -sugárzás tartományába esik - Nagyon keskeny sávú

A Mössbauer-effektus technikája Sugárforrás: olyan magot tartalmazó vegyület, amely magot a mintában vizsgálni akarunk Gerjesztett állapot Alapállapot Sugárforrásként szolgáló vegyületben gerjesztett magok radioaktív bomlás során keletkezhetnek.

Példa: 57 Fe-mag Mössbauer-abszorpciójának vizsgálata Sugárforrás: 57 Co izotóp

Mössbauer-spektroszkópia A Mössbauer-effektus felhasználása kémiai szerkezetvizsgálatra. A periódusos rendszer elemeinek mintegy fele tanulmányozható Mössbauer-spektroszkópiával. Szükség van eggyel nagyobb rendszámú radioaktív izotópra, amelynek bomlása során a vizsgált atommag keletkezik, mégpedig gerjesztett állapotban. Néhány gyakran vizsgált mag: 57 Fe, 119 Sn, 121 Sb, 125 Te.

Kísérleti technika  -sugárforrás hangolása Doppler-eltolódással. A fényforrást a mintához képest mozgatják. -t szisztematikusan változtatva mérik az abszorpciót. Detektor:  -sugárzás intenzitását mérő detektor: NaI kristály. Egy  -foton a NaI kristályrács számos I - -ionjáról elektront szakít le. Az így keletkezett áramot elektronsokszorozóval erősítik.

A spektrum jellemzői Kémiai eltolódás: az abszorpciós frekvencia jellemző az atommagra, de kis mértékben függ az elektronsűrűségtől a mag környezetében, azaz jellemző a molekula szerkezetére. Kvadrupólus felhasadás: a kvadrupólus az atommagok töltéseloszlását jellemző mennyiség. Ha a magnak van kvadrupólusa (nem gömbszimmetrikus elektromos tér), az I kvantumszámmal jellemezhető energiaszintek felhasadnak. Mágneses felhasadás: mágneses térben az I kvantumszámmal jellemzett szintek M I -szerint felhasadnak. Megfigyelhető: –a mintát külső mágneses térbe téve –belső mágneses térrel bíró anyagoknál (pl. ferromágneses anyagok)

Fe 3 (CO) 12 - Mössbauer-színképe

12. MÁGNESES MAGREZONANCIA

Az atommagok abszorpciója mágneses térben Mágneses tér távollétében: csak I-től függ, M I szerint degenerált Mágneses térben: a degenerált szintek M I szerint felhasadnak. Mössbauer effektus Mágneses magrezonancia

A mágneses magrezonancia jelensége Az M I kvantumszám megváltozásával járó átmenet, I nem változik. Mágneses térben észlelhető Az abszorpció rádióhullámú tartományba esik.

Az energiaszintek a mágneses térben történő felhasadásának oka (Analógia a H-atommal) Ha I nem 0, a magnak mágneses momentuma van, ez a mágneses momentum kölcsönhatásba lép a mágneses térrel.

Spin operátor Jele: Sajátérték egyenletet lehet felírni absz. értékére és z irányú vetületre.

sajátértéke P s : spinhez tartozó imp. momentum : spinre utaló mellékkvantumszám abszolút érték

sajátértéke : z irányú komponens

Spinből származó mágneses momentum abszolút érték z irányú komponens g e : Lande-faktor hidrogénatomban g e =2,0023

Többelektronos atomok Vektormodell Figyelembe veszi a mozgó elektronok kölcsönhatását.

Impulzusmomentum Elektronok egyedi imp. momentuma nem határozható meg, csak az összes elektron imp. momentumának eredője. Impulzusmomentum sajátértéke H-atom Több elektronos atom Pálya imp. momentum. Spinmomentum Spin-pálya csatolás L, S, J : „csoportkvantumszámok”

Magspinből származó impulzusmomentum és mágneses momentum. (Analógia a többelektronos atomokkal) Impulzusmomentum abszolút értéke: Mágneses momentum abszolút értéke: Mágneses momentum z irányú vetülete: Impulzusmomentum z irányú vetülete: g : „Lande-faktor”  n : atommag Bohr- magnetonja m n : mag tömege

Mágneses momentummal rendelkező részecske potenciális energiája mágneses térben Klasszikus fizika: Ha a mágneses tér iránya z, Kvantummechanikában: : mágneses indukció

Az NMR spektroszkópiában legtöbbet vizsgált magok: 1 H, 13 C

M I = +1/2 szint energiája: M I = -1/2 szint energiája:

M I -szerinti felhasadás függése a mágneses tértől M I = -1/2 M I = +1/2 E

1 H és 13 C NMR-spektrumokban észlelhető átmenet M I = +1/2 M I = -1/2 Az átmenet megengedett! Az elnyelt foton energiája:

Atommagok NMR abszorpciós frekvenciája mágneses térben magTermészetes gyakoriság (%)I (alapáll.) (MHz) 1 H99,981/242,58 11 B81,173/213,66 13 C1,111/210,70 19 F100,01/240,06

12.2 Az NMR színképek jellemzői I. A kémiai eltolódás.

Etil-benzol 1 H NMR színképe

A kémiai eltolódás A kémiai eltolódás fogalma: az atomra jellemző abszorpciós (emissziós, ionizációs) frekvencia kismértékben függ az atom környezetétől a molekulában. Megfigyelhető: XPS (atomtörzsek ionizációs energiáját mérjük) Mössbauer-effektus (atommag energiájának változása  -foton elnyeléssel) Mágneses magrezonancia (mágneses térben felhasadt magenergianívók közötti átmenet rádióhullámú sugárzás elnyelésével)

Kémiai eltolódás az NMR- spektrumban Mágneses tér hatására rendeződik az elektronok mozgása a magok körül, emiatt megváltozik a lokális mágneses tér. A kémiai eltolódás miatt megváltozott abszorpciós frekvencia: : árnyékolási tényező pozitív: diamágneses árnyékolás negatív : paramágneses árnyékolás

Az NMR-spektrumban a kémiai eltolódással módosult abszorpciós frekvencia megadása: : kémiai eltolódás (a jelenség neve is kémiai eltolódás!) 0 megválasztása: elvi lehetőség: izolált atommag -je konvencionális megoldás: egy kiválasztott vegyület atomjának -je Leggyakoribb referenciavegyület: TMS előnye: az 1 H és 13 C spektrumban is egyetlen abszorpciós sáv van. TMS

 előnye a -vel szemben: független a mágneses térerőtől. Példa: Hány NMR jel van az etanol 1 H spektrumában? Hány NMR jel van az aceton 1 H spektrumában? A funkciós csoportokra jellemző, hogy mekkora a bennük levő 1 H, 13 C, stb. magok kémiai eltolódása.

1 H kémiai eltolódások

13 C kémiai eltolódások

12.3. Az NMR színképek jellemzői II. A spin-spin csatolás. Spin-spin csatolás: egy molekulán belüli NMR-aktív atommagok mágneses momentumai kölcsönhatásba lépnek egymással, emiatt megváltozik az összes egymással kölcsönhatásban lévő mag energiája. A spektrumban ez a sávok felhasadásában nyilvánul meg.

Példa: 13 C spektrumban 1:2:1 relatív intenzitású komponensek 13 C és a két 1 H mag közötti kölcsönhatás miatt.

A CH 2 -csoport 13 C-mag energiája a spin-spin kölcsönhatás figyelembevételével. J CH : C-H csatolási állandó Gerjesztés során: M I H1 M I H2 E CH +1/2+1/2+1/2 J CH +1/2-1/20 -1/2+1/20 -1/2-1/2-1/2 J CH

A csatolási állandó függ milyen atomok között alakul ki (pl. 1 H- 1 H, 1 H- 13 C, 1 H- 19 F, 13 C- 13 C csatolás) az atomok közötti távolság milyen kémiai kötés(ek) van(nak) köztük Nem függ a mágneses térerőtől.

A csatolási állandó megadása: J CH /h,J HH /h, J CC /h, stb. [Hz]

Kémiailag ekvivalens magok: - kémiai eltolódásuk megegyezik Pl.: -CH 3 3 protonja, - CH 2 2 protonja. Mágnesesen ekvivalens magok - olyan kémiailag ekvivalens magok, amelyek egy másik kémiailag ekvivalens csoport egyes tagjaival azonos spin-spin kölcsönhatásban vesznek részt.

Példa kémiailag ekvivalens magokra

NMR-spektrum értékelése Kémiai eltolódások ésalapján Spin-spin csatolások I. rendű spektrum:  -k közötti különbségek sokkal nagyobbak, mint a spin-spin csatolás okozta felhasadás. Ezek értékelése viszonylag egyszerű.

Etil-benzol 1 H NMR színképe

A spin-spin csatolás szabályai az 1 H spektrumban Az azonos szénatomon lévő protonok nem hasítják fel egymás jelét, ha mágnesesen ekvivalensek. A szomszédos szénatomokon lévő protonok közötti spin-spin csatolás jól látható felhasadást okoz. A távolabbi szénatomokon lévő protonok közötti spin- spin csatolás az alifás láncok mentén kicsi, csak különösen nagy felbontású spektrumokban észlelhető. Konjugált C-C kötések mentén a távolabbi protonok között is észlelhető spin-spin csatolás alakul ki.

Etil-benzol 1 H NMR-spektruma M I H1 M I H2 E HH +1/2+1/2+1/2 J HH +1/2-1/20 -1/2+1/20 -1/2-1/2-1/2 J HH Felhasadások a CH 3 -csoport jelében (a CH 2 csoport okozza)

Etil-benzol 1 H NMR-spektruma M I H1 M I H2 M I H3 E HH +1/2+1/2+1/2+3/2 J HH +1/2+1/2-1/2+1/2 J HH +1/2-1/2+1/2+1/2 J HH -1/2+1/2+1/2+1/2 J HH +1/2-1/2-1/2-1/2 J HH -1/2+1/2-1/2-1/2 J HH -1/2-1/2+1/2-1/2 J HH -1/2-1/2-1/2-3/2 J HH Felhasadások a CH 2 -csoport jelében (a CH 3 csoport okozza)

Az NMR-spektrumból tehát meghatározható a vizsgált anyag molekuláinak szerkezeti képlete.

A spin-spin kölcsönhatás a 13 C spektrumban A 13 C atomok jelét a hozzájuk kapcsolódó protonok hasítják fel. CH-csoport 1:1 dublett CH 2 -csoport 1:2:1 triplett CH 3 -csoport 1:3:3:1 kvartett

Az 1,3-butándiol normál ill. off-resonance technikával készült 13 C NMR-színképe

12.4. NMR-spektroszkópia Általában oldatmintát vizsgálnak. Oldószerek: CDCl 3, aceton-D 6 (az oldószer 1 H abszorpciója nem zavar) Az oldathoz TMS-t adnak.

Az NMR-spektrumban a jel gyenge 1H1H Ok: kicsi a  E (különbség az alap és a gerjesztett állapot között). Az abszorpciós és stimulált emisszió valószínűsége csaknem megegyezik. A gerjesztés során tovább közelít az arány az 1-hez. Relaxációs folyamatok: magok sugárzásmentesen leadják gerjesztési energiájukat. t = 25 o C

Az NMR-spektrométer felépítése

Korszerű NMR-berendezés erős mágnes: sok az I.-rendű spektrum részlet impulzus üzemű készülék (FT-NMR)

FT-NMR berendezés gerjesztő impulzussorozata és az impulzussorozat Fourier-transzformáltja

A) Az etil-benzol deuteroacetonos oldatáról felvett FID- görbe b) A Fourier-transzformációval kapott 13 C-NMR-spektrum

NMR képalkotás