HETEROGÉN FÁZISÚ ENZIMES REAKCIÓK Gazdasági hátrányok: Az enzimek drágák, 1-10 $/mg Csak egyszer használhatók fel, a reakció után elvesznek, illetve kinyerésük.

Slides:



Advertisements
Hasonló előadás
A szennyvíztisztítás biokinetikai problémái a gyakorlatban.
Advertisements

Az “sejt gépei” az enzimek
IZOENZIMEK Definíció: azonos funkció, de: eltérő primer szerkezet,
A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011.
Inhibitorok Írta: Rauscher Ádám Bemutató: Kutsán György
Rézcsoport.
ENZIMOLÓGIA 2010.
Az enzimek A kémiai reakciók mindig a szabadenergia csökkenés irányába mennek végbe. Miért nem alakul át minden anyag a számára legalacsonyabb energiájú,
Készítette: Móring Zsófia Vavra Szilvia
Elválasztástechnikai Kutató és Oktató Laboratórium
REAKCIÓKINETIKA BIOLÓGIAI RENDSZEREKBEN
Mikronalalitikai kurzus elválasztástechnika
REAKCIÓKINETIKA BIOLÓGIAI RENDSZEREKBEN
FERMENTÁCIÓ MŰVELETEI
Upstream / downstream folyamatok
Anaerob biotechnológia Immobilizálás
TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek.
Az élő szervezeteket felépítő anyagok
KOLLOID OLDATOK.
VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
VEGYÉSZETI-ÉLELMISZERIPARI KÖZÉPISKOLA CSÓKA
BIOKÉMIA I..
Sav bázis egyensúlyok vizes oldatban
A sejt kémiája MOLEKULA C, H, N, O – tartalmú vegyületek (96,5 %).
MICHAELIS-MENTEN KINETIKA KEZDETI REAKCIÓSEBESSÉG
ALLOSZTÉRIA-KOOPERATIVITÁS
Kémiai kinetika A kémiai reakciók osztályozása:
ENZIMEK Def: katalizátorok, a reakciók (biokémiai) sebességét növelik
Kémiai reakciók katalízis
EGYÉB HATÁSOK AZ ENZIMAKTIVITÁSRA BIM SB 2001 Ionerősség pH Hőmérséklet Nyírás Nyomás (hidrosztatikai) Felületi feszültség Kémiai szerek (alkohol, urea,
MIÉRT NEM MÉRHETŐ? E + S P + E mol/dm3!!!!
Bioszenzorok Bioreaktorok és a mérnöki gyakorlat kiselőadás
HETEROGÉN FÁZISÚ ENZIMES REAKCIÓK
BIOREAKT-MSc Gombanövekedés kinetikája (Streptomyceták hasonlóan!) Szubmerz fonalas növekedés - mint baktériumok, Monod kinetika….. Felületi kétdimenziós.
Készítette: Kozik Marcell
MIÉRT NEM MÉRHETŐ? E + S P + E mol/dm3!!!!
Peptidszintézis BIM SB 2001 SZINTÉZIS PROTE(IN)ÁZ BONTÁS -CO-NH- (1901)
C/E + O2 + N + egyéb tt. komponens
Növekedés és termékképződés idealizált reaktorokban
Növekedés és termékképződés idealizált reaktorokban folytatás...
Vízminőségi modellezés. OXIGÉN HÁZTARTÁS.
ŐSZI RADIOKÉMIAI NAPOK 2004
STRONCIUM-ION MEGKÖTŐDÉSÉNEK KINETIKÁJA TERMÉSZETES AGYAGMINTÁKON
EGYÉB HATÁSOK AZ ENZIMAKTIVITÁSRA BIM BSc 2007 Ionerősség pH Hőmérséklet Nyírás Nyomás (hidrosztatikai) Felületi feszültség Kémiai szerek (alkohol, urea,
4. Ismertesse az aminosavak reszolválási módszereit.(5 pont)
ADSZORPCIÓ.
ADSZORPCIÓ.
Transzportfolyamatok felszín alatti vizekben Simonffy Zoltán Vízi Közmű és Környezetmérnöki Tanszék Transzportfolyamatok felszín alatti vizekben Simonffy.
Koaguláció. Kolloid részecske és elektrosztatikus mezője Nyírási sík (shear plane): ezen belül a víz a részecskével együtt mozog Zéta-potenciál: a nyírási.
Koaguláció.
Transzportfolyamatok II. 3. előadás
Oldószermodellek a kvantumkémiában A kémiai reakciók legnagyobb része oldószerben játszódik le (jelentőség) 1. Az oldószermodellek elve 2.
OLDÓDÁS.
Bioszeparációs technikák ELVÁLASZTÁSTECHNIKA
OECD GUIDELINE FOR THE TESTING OF CHEMICALS Soil Microorganisms: Carbon Transformation Test OECD ÚTMUTATÓ VEGYI ANYAGOK TESZTELÉSÉRE Talaj Mikroorganizmusok:
Vízszennyezés.
II. RÉSZ OLAJSZENNYEZÉSEK.
A Föld vízkészlete.
Kémiai reakciók Kémiai reakció feltételei: Aktivált komplexum:
Szupermakropórusos polimerek
Kémiai reakciók iránya
MSc 2012 ENZIMES ÖSSZEFOGLALÓ Egy egység az az enzim mennyiség, amely 1  mol szubsztrátot alakít át vagy 1  mol terméket képez 1 perc alatt adott reakció.
Koenzim regenerálás Sok enzimes reakcióhoz sztöchiometrikus mennyiségű koszubszt-rátra van szükség. Leggyakrabban ez NAD vagy NADP. Ezek olyan drága anyagok,
13.példa BIM SB 2001 A szérum lipáz aktivitása diagnosztikai szempontból jelentős bizonyos pankreász megbetegedések felismerésében. Mindazonáltal az adatok.
Enzimkinetika Komplex biolabor
Növekedés és termékképződés idealizált reaktorokban
Polimerizáció Bevezetés Gyökös polimerizáció – elemi lépések
ENZIMOLÓGIA.
Reakciókinetika.
Bioenergiák: etanol, butanol
Előadás másolata:

HETEROGÉN FÁZISÚ ENZIMES REAKCIÓK Gazdasági hátrányok: Az enzimek drágák, 1-10 $/mg Csak egyszer használhatók fel, a reakció után elvesznek, illetve kinyerésük a reakcióelegyből bonyolult és drága. Technológiai hátrány: szennyezik a terméket, tisztítását nehezítik. HOMOGÉN ENZIMES REAKCIÓK ELŐNYÖK/HÁTRÁNYOK Előny a rendszer homogenitása, az enzim - izolálásán kívül – előkészítést nem igényel.

Nelson és Griffin 1916 ban véletlenül fedezte fel, hogy élesztő invertáza aktívszénen adszorbeálódott de megőrizte az aktivitását a szaharóz hidrolízisében. Ipari gyakorlattá illetve kereskedelmivé akkor vált, amikor Grubhofer és Schleith egy sor enzimet rögzítettek: karboxipeptidázt, diasztázt, pepszint és ribonukleázt. Ezeket diazotálással végezték poli-aminosztirol gyantára kovalens kötéssel. N-acyl-D, L-aminosav Az első ipari alkalmazás Chibata nevéhez fűződik 1969-ben, aki aminoacilázt rögzített DEAE Sephadex-re ionosan és ezt N-acyl-D, L-aminosav rezolválására használták. Enzim Immobilizáció története

KÉMIAI MÓDSZEREK 1 Kovalens kötés nem esszenciális aminosav-oldallánc(!) és vizben nem oldódó, funkciós csoporttal ellátott hordozó mátrix között X + E E + X Hordozó : természetes polimer: agar, agaróz, kitin, cellulóz, kollagén,..., szintetikus polimer: poliuretán, polisztirol, nylon,...,agar, agaróz, kitin, cellulóz szervetlen hordozók: üveg, alumínium, szilikagél, magnetit,... Kovalens kötés kialakítása: szabad  -, β- vagy γ-COOH,  -, β –NH 2 csoportok fenil-, OH-, SH- vagy imidazol-csoportok LÉPÉSEK: 1. Hordozó aktiválása ( KAR és -X, reaktiv csoport felvitele), 2. a kovalens kötés létrehozása az enzim és az aktivált hordozó között. Aktiv centrum védelme: S v. analogon jelenléte

KÉMIAI MÓDSZEREK 3 MÁTRIX:vicinális -OH: cellulóz,sephadex sepharose OH + CNBr O O C NH + E - NH 2 OH O O O C N E C - NH E NH C - NH E OH O O imido-karbamát N-szubsztituált imido-karbamát szubsztituált izo-karbamid N-szubsztituált karbamát BRÓMCIÁNOS KÖTÉS

Glükóz dextrán sephadex ® Tengeri alga agar(óz) sepharose ® Pharmacia - Pharmacia Upjohn - Pharmacia ???

KÉMIAI MÓDSZEREK 5 Üvegfelületre rögzítés tiocianát Tioszénsavdiamid=tiokarbamidszármazék

KÉMIAI MÓDSZEREK 6 Schiff-bázis

Keresztkötések létrehozása KÉMIAI MÓDSZEREK 7

KÉMIAI MÓDSZEREK 8 KERESZTKÖTÉSEK LÉTREHOZÁSA Rendszerint inert fehérjével együtt immob. (mintegy hordozó) (zselatin, albumin,kollagén,tojásfehérje) Lizozim! Nem élő sejtek vagy feltárt sejtek homogenizátumára immobra is alkalmas

Purine nucleoside phosphorylase (PNP) Cross-linked Enzyme crystal of PNP CLEC (90-es évek) ALTUS Biologics (USA) Scanning electron microscopic view of CLEC laccase Preparation and characterization of cross-linked enzyme crystals of laccase J. Jegan Roy, T. Emilia Abraham Journal of Molecular Catalysis B: Enzymatic 38 (2006) 31–36 Surface area (m 2 /g) 2.456

CLEA: precipitáció ( (NH 4 ) 2 SO 4, BuOH) + keresztkötés Kombinálja a tisztítást és a rögzítést Glutáraldehid, de…. Pl. dextránpolialhehid Előnyei: Egyszerű és sokféle enzimhez megfelelő módszer Tiszta és nem tisztított enzim preparátumokkal is végrehajtható Nagy stabilitás hővel, szerves oldószerekkel és proteolízissel szemben Nem oldódik vizes környezetben (nem vész el kioldással az aktivitása) Combi CLEA: két vagy több enzim együtt immobolizálása Alcalase-CLEA CLEA Technologies NL) Mindkettő jó vizes és szerves fázisokban megvalósuló biotranszformációkra

kémiai kötés esetleges hatásai:

FIZIKAI MÓDSZEREK 1 ADSZORPCIÓ IONCSERÉLŐN – NEM SPECIFIKUS KÖNNYEN LEVÁLIK (pH) GÉLBE ZÁRÁS MIKROKAPSZULÁZÁS MEMBRÁN „MÖGÉ” ZÁRÁS

FIZIKAI MÓDSZEREK 2 GÉLBE ZÁRÁS ALGINÁT KÉPZÉS PUFFEROLT ENZIM + Na-ALGINÁT GOLYÓCSKÁK, AMELYEK BEZÁRVA TARTALMAZZÁK AZ ENZIMET ALGINÁT: poli-β D-mannuronsav (1→ 4), …..-guluronsav Hidrofil, kolloid, egyenesláncú polimer Macrocystis pyrifera Frissen!!!

FIZIKAI MÓDSZEREK 3 az enzim nm átmérőjű: BEZÁRÓDIK CH 2 CONH 2 CH 2 CO NH CH 2 NH CH 2 CO CH 2 -CH 2 -CH-CH CH 2 -CH-CH NH CO NH CO CH 2 CONH 2 COCONH 2 NH POLIAKRILAMID GÉLBE ZÁRÁS E + + K 2 S 2 O 8 iniciátor  di-MeNH 2 -propionitril (DMAPN) gyorsitó nm Pórus-átmérőjű szemcsék N’N’-metilén- bisakrilamid akrilamid Élelmiszeriparban nem használható az akrilamid toxicitása miatt (nem GRAS)

FIZIKAI MÓDSZEREK 4 M1M1 M1M1 M1M1 M1M1 M1M1 M2M2 M2M2 M2M2 M2M2 E E E E E Szerves fázis VIZES FÁZIS MIKROKAPSZULÁZÁS: ÁLLANDÓ POLIMER MEMBRÁNOS MK POLIMER HÉJ NAGY FELÜLET 2500cm 2 /cm 3

FIZIKAI MÓDSZEREK 5 MIKROKAPSZULÁZÁS: nem állandó koacervátumok: pl. REVERZ MICELLA

ULTRASZŰRŐ MEMBRÁNOS MEGOLDÁS FIZIKAI MÓDSZEREK 6

Módszerek összehasonlítása Tulajdonságfizikai adszorpció ionos kötés kovalens kötés keresztkötés(gél)bezárás megvalósításkönnyû nehéz enzimaktivitás nagysága kicsinagy közepesnagy S-specificitásnem változiknem változik változhat kötõ erõgyengeközepeserõs regeneráláslehetséges lehetetlen alkalmazhatósággyengeközepes gyengejó költségalacsony magasközepesalacsony mikrobás fertõzés elleni védelem nincs lehetségesmegvalósul

Note! Az enzim preparálása nem mindíg szükséges. teljes sejt immobilizálás: költségkímélő (l. intracelluláris enzimek…) természetes környezet védelem koenzimregenerálás a módszerek ugyanazok Élő sejtkoenzimes átalakítások Nem élő sejt preparátumpermeabilizálás egyszerű átalakítások (pl laktózhidrolízis)

RÖGZITETT ENZIMEK KINETIKÁJA stagnáló folyadékfilm SoSo KÜLSŐ BELSŐ ANYAGÁTADÁS REAKCIÓ hordozó részecske E+S D D K K=konvekció D=diffúzió 1.konvektív transzport folyadék fõtömegéből a rögz. enzim felületén lévő stagnáló (nem kevert) folyadék filmhez. jó keveredés→NINCS sebesség meghatározó transzport ellenállás. 2. Diffúzió a stagnáló folyadékfilmen keresztül a részecske felületére 3. Diffúzió a részecske belsejébe, a reakció tényleges helyére.

RÖGZITETT ENZIMEK KINETIKÁJA KÜLSŐ ANYAGÁTADÁS 1 legyen x = S/So és κ =K S / So és A STAGNÁLÓ FOLY. FILMBEN cm/s cm 2/ cm 3 HA A M-M ÉRVÉNYES: (és nincs S akkumuláció) Transzformáljuk DIMENZÓMENTESSÉ!!!

RÖGZITETT ENZIMEK KINETIKÁJA KÜLSŐ ANYAGÁTADÁS 2 Damköhler szám (Da): Da = V max / k S S o a = = maximális reakciósebesség / maximális anyagátadási sebesség 5 paraméter 2 paraméter

RÖGZITETT ENZIMEK KINETIKÁJA KÜLSŐ ANYAGÁTADÁS 3 Da << 1, a.átadási sebesség >> maximális reakciósebesség reakció-limitált rezsim Da >> 1, anyagátadás << reakciósebesség diffúzió-limitált v. transzport rezsim (S=0 a felületen) Da = V max / k S S o a

RÖGZITETT ENZIMEK KINETIKÁJA KÜLSŐ ANYAGÁTADÁS 4 ha β =0, x=  κ Ha β> 1 ha β<1 ahol megoldása

RÖGZITETT ENZIMEK KINETIKÁJA KÜLSŐ ANYAGÁTADÁS 5 effektivitás-tényezõ: észlelt reakciósebesség η = reakciósebesség ha nem lenne transzport ellenállás Ha x=1 S=S 0 Méri a tömegátadás reakciót lassító hatását Ha Da→0 = nincs transzport gátlás (reakciólimitált) INTENZÍV KEVERÉS!!! DE... Da = V max / k S S o a

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 1 FELTÉTELEK A KINETIKAI LEÍRÁSHOZ SÉMÁHOZ 1.HOMOGÉN ELOSZLÁS A RÉSZECSKÉN BELÜL 2.GÁTOLT DIFFÚZIÓ A PÓRUSOKBAN EFFEKTÍV DIFFÚZIÓS ÁLLANDÓ DIFFÚZIÓS ÁLLANDÓ A SZABAD FOLY. FÁZISBAN POROZITÁS= SZABAD TÉRFOGAT / TELJES TÉRFOGAT

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 2 kacskaringósság= h / l átlagos ( h / l ) l r S, r P ekvivalens sugár Molekuláris diffúziógátlás mértéke: (hindrance) 3. Külső határréteg elhanyagolható 4. Gömbszimmetrikus részecske Ha a pórus >>S H=1 !

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 3 ANYAGMÉRLEG AZ r és r+dr SUGARÚ GÖMBHÉJRA KI

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 4 ÁLLANDÓSULT ÁLLAPOTBAN: dS/dt=0 :4πdr VEGYÜK A dr→0 határátmenetet! VÉGEZZÜK EL A DERIVÁLÁST: :r 2

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 5 BIZONYOS FELTÉTELEK MELLETT MEGOLDHATÓ ! MÁS, RÉSZECSKÉKBE TÖRTÉNŐ ANYAGÁTADÁST IS EZZEL IRNAK LE! Pl.: gomba pellet, sejt,... MEGOLDÁSAI: MEGOLDÁSAI: 1. NULLADRENDŰ ENZIMES REAKCIÓ 2. ELSŐRENDŰ ENZIMES REAKCIÓ ESETÉN 3. MICHAELIS-MENTEN KINETIKA ESETÉN

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 6 1. NULLADRENDŰ REAKCIÓ k 0 ha S > 0 V = 0 egyébként. K m  S, → k 0 = V max HATÁRFELTÉTELEK: ha r → 0 S → 0 ha r = R S = So  =rS helyettesítés Integráljuk kétszer :r

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 7 Visszaírva S-t ha r = 0 akkor S=0, → C 2 = 0 a másik peremfeltételbõl C 1 kiszámítható: Végső megoldás 0-ad rendű reakciónál AHOL S NULLÁVÁ VÁLIK, MÁR NINCS REAKCIÓ KRITIKUS SUGÁR

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 8 A reakciósebesség tehát, amely az R-R c vastagságú gömbhéjban érvényes, a következő: HA NINCS TRANSZPORT GÁTLÁS, A MAX. SEBESSÉG: EFFEKTIVITÁS tényleges maximális csökkentik növelik %

2. ELSŐRENDŰ REAKCIÓ ESETÉN RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 9 ha S  K m, vagyis ha a V= kS BEVEZETÉSEK: THIELE-modulus (Reakc.seb./diff.seb) PEREMFELTÉTELEK: S' = 0 ha r' = 0 S' = 1 ha r' = 1  ' = r' S' LEGYEN

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 10 MEGOLDÁS: S' = 0 ha r' = 0 S' = 1 ha r' = 1 C 1 = 0

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 11 ~100% (Reakc.seb./diff.seb) 0

RÖGZITETT ENZIMEK KINETIKÁJA BELSŐ ANYAGÁTADÁS 12 Részecske közepe Részecske felülete S’ r’

RÖGZITETT ENZIMEK Néhány szubsztrát tipikus effektív diffúziós állandója szubsztrát gél(hordozó)koncentráció % hõmérséklet oC D s m 2 /s glükózCa-alginát2256.1* etanolCa-alginát2251.0*10 -9 szaharózzselatin022.85* szaharózzselatin * szaharózzselatin * szaharózzselatin * laktózzselatin * L-triptofánCa-alginát *10 -10

RÖGZITETT ENZIMEK OLDOTT ENZIMEK ELŐNYÖK * HOMOGÉN RENDSZER *ELŐKÉSZÍTÉS NINCS *CSAK REAKCIÓ-REZSIM VAN HÁTRÁNYOK*DRÁGÁK $/mg *ELVESZNEK *A TERMÉKET SZENNYEZIK *CSAK SZAKASZOS TECHNOLÓGIA RÖGZÍTETT ENZIMEK ELŐNYÖK*NEM SZENNYEZIK A TERMÉKET *KÖNNYEN ELVÁLASZTHATÓK *ÚJRA FELHASZNÁLÁSI LEHETŐSÉG *FOLYTONOS TECHNOLÓGIA IS....általános előnyei *KÖNNYŰ TERMINÁLÁS *STABILISABB LEHET HÁTRÁNYOK*RÖGZÍTÉS KÖLTSÉGES (ELŐKÉSZÍTÉS *CSÖKKEN AZ ENZIM AKTIVITÁSA *DIFFÚZIÓS GÁT (TRANSZPORT-REZSIM IS)

Szakaszos reaktor STR Folytonos reaktor CSTR Folytonos reaktor recirkulációval CSTR Töltött oszlop reaktor PFR Töltött oszlop reaktor recirkulációval PFR Fludidágyas reaktor

RÖGZITETT ENZIMEK

Enzimlektród 1 Speciális alkalmazás AMPEROMETRIÁS i

Lipid + vízGlicerin + zsírsav +H + POTENCIOMETRIÁS

Enzimlektród 2 ELEKTRÓDFOLYAMAT PÉLDA MEDIÁTOR

Enzimlektród 4

a) Biocatalyst - converts the analyte into product. b) Transducer - detects the occurrence of the reaction and converts it into an electrical signal. c) Amplifier - amplifies the usually tiny signal to a useable level. d) Microprocessor - signal is digitised and stored for further processing, e.g. integration, derivatisation, etc. d) Microprocessor - signal is digitised and stored for further processing, e.g. integration, derivatisation, etc. e) Display - usually need a real-time display of the analyte concentration. e) Display - usually need a real-time display of the analyte concentration. BIOSZENZOR