HAJTÁSOK-ÁTTÉTEL.

Slides:



Advertisements
Hasonló előadás
Stacionárius és instacionárius áramlás
Advertisements

A hőterjedés differenciál egyenlete
Szellőzés- és Klímatechnika
GÉP - MUNKA – ENERGIA - TELJESÍTMÉNY
Körfolyamatok (A 2. főtétel)
GÉP - MUNKA – ENERGIA - TELJESÍTMÉNY
Hősugárzás Gépszerkezettan és Mechanika Tanszék.
Valóságos gázok.
Hő- és Áramlástan I. - Kontinuumok mechanikája
GÉPKIVÁLASZTÁS.
Volumetrikus szivattyúk
Volumetrikus szivattyúk
A munkasebesség egyenlőtlensége
HATÁSFOK-SÚRLÓDÁS-ÁTTÉTEL
VÁLTOZÓ SEBESSÉGŰ ÜZEM
Az impulzus tétel alkalmazása (megoldási módszer)
A hőterjedés alapesetei
Az impulzus tétel Hő- és Áramlástan I. Dr. Író Béla SZE-MTK
A Borda-Carnot veszteség
Az impulzus tétel alkalmazása (Allievi elmélete)
Az impulzus tétel alkalmazása (egyszerűsített propeller-elmélet)
Hő- és Áramlástan II. Termodinamika és Hőközlés (NGB_AG004_2)
Gázturbinák Hő- és Áramlástan Gépei Író Béla SZE-MTK
Fúvók-Kompresszorok Hő- és Áramlástan Gépei Író Béla SZE-MTK
Gőz körfolyamatok.
VÁLTOZÓ SEBESSÉGŰ ÜZEM
Hősugárzás.
Gázkeverékek (ideális gázok keverékei)
Hőerőművek körfolyamatainak hatásfokjavítása
Hőátvitel.
Erőgépek és gépcsoportok jelleggörbéi
Volumetrikus szivattyúk
Ideális kontinuumok kinematikája
A nedves levegő és állapotváltozásai
Kalorikus gépek elméleti körfolyamatai
Veszteséges áramlás (Hidraulika)
Reverzibilis és irreverzibilis folyamatok
Az Euler-egyenlet és a Bernoulli-egyenlet
Hővezetés rudakban bordákban
Az entalpia és a gőzök állapotváltozásai
A kontinuitás (folytonosság) törvénye
Veszteséges áramlás (Navier-Stokes egyenlet)
Az elemi folyadékrész mozgása
Egyszerű állapotváltozások
A Bernoulli-egyenlet alkalmazása (Laval fúvóka)
A hőátadás.
A munkasebesség egyenlőtlensége
Mérnöki számítások MÁMI_sz2 1.
Általános Géptan (AG0001_1)
HATÁSFOK - TERHELÉS.
Munkapont - Szabályozás
A fajhő (fajlagos hőkapacitás)
HATÁSFOK-SÚRLÓDÁS-EGYENLETES SEBESSÉGŰ ÜZEM
Hő- és Áramlástan Gépei
Munkapont - Szabályozás
Erőgépek és gépcsoportok jelleggörbéi
Az Egyetem oktatási-kutatási szervezete
Hővezetés falakban Író Béla Hő- és Áramlástan II.
Gőz körfolyamatok.
Hő- és Áramlástan Gépei
Kalorikus gépek elméleti körfolyamatai
Cikloid hajtómű tervezése CAD Alkalmazásom 2. Mechatronika BSc szak
HATÁSFOK-SÚRLÓDÁS-ÁTTÉTEL
Áramlás szabad felszínű csatornában Hő- és Áramlástan I. Dr. Író Béla SZE-MTK Mechatronika és Gépszerkezettan Tanszék.
Az impulzus tétel alkalmazása (Allievi elmélete)
Az impulzus tétel alkalmazása (megoldási módszer)
Stacionárius és instacionárius áramlás
Az impulzus tétel Hő- és Áramlástan I. Dr. Író Béla SZE-MTK
A Borda-Carnot veszteség
Az Euler-egyenlet és a Bernoulli-egyenlet
Előadás másolata:

HAJTÁSOK-ÁTTÉTEL

Teljesítményátvitel súrlódással (dörzshajtások) 2 Fk=Fs=·FN 1 (1) FN FN (2)

Teljesítményátvitel súrlódással (dörzshajtások) Fk=Fs=·FN (1) (2) u1=u2 ideális esetben u2<u1 valóságos esetben

Teljesítményátvitel súrlódással (dörzshajtások) Fk=Fs=·FN (1) (2) valóságos esetben

Teljesítményátvitel súrlódással (dörzshajtások) Fk=Fs=·FN (1; hajtó) (2; hajtott) A csúszás növeli az áttétel értékét!

Teljesítményátvitel súrlódással (szíj- és kötélhajtások) 2 FN T1 FN 1 To Feszes ág Laza ág Hajtott kerék Hajtó kerék

Teljesítményátvitel súrlódással (szíj- és kötélhajtások) 1 T1 FN FN 1 Feszes ág To Laza ág

Dörzshajtások Előnyök Hátrányok Egyszerű és olcsó Extrém nagy áttétel lehetősége Kevés karbantartás Kis zaj Nincs túlterhelés Nem sebességtartó Általában kis áttétel Korlátozott teljesítmény Nagy hajlító igénybe-vétel a tengelyen

Kényszerhajtások Fogaskerék Lánc Csiga-csigakerék

Kényszerhajtásoknál A kerületi sebesség a kényszerkapcsolat miatt azonos. Az áttétel a geometriai méretekkel egyértelműen adott. A fogazott elemek egymáson csúszással gördülnek le, a csúszás közben keletkező súrlódási hő a veszteség.

Kényszerhajtások Előnyök Hátrányok Sebességtartó Nagy teljesítmény Nagy áttétel Változtatható áttétel Kis hajlító igénybevétel a tengelyen Költséges Bonyolult a gyártás Karbantartásigényes Zaj és rezgés

Egyszerű csigasor (kinematikai törvények, súrlódás nélkül) F F=G/4 ill. G/n vG=vF/4 ill. vF/n a csigasor áttétele i=n PF=F·vF=G·vG=PG G

Egyszerű csigasor (kinematikai törvények, súrlódással) F>G/4 ill. G/n vG=vF/4 ill. vF/n a csigasor áttétele i=n F PF=F·vF>G·vG=PG Oka: a csigakerekek csapsúrlódása és a kötél merevsége G

Egyszerű csigasor (kinematikai törvények, súrlódással) F·2 F·3 vG=vF/4 ill. vF/n a csigasor áttétele i=n  = feszültségi viszony (<1) F· F F·4 G=F··(1++2+3) G

Az egyszerű csigasor hatásfoka Ez a tényező elmarad, ha az állócsigák száma egyel kevesebb, mint a mozgó csigáké! ‘n’ a kötélágak száma.

Meddig érdemes növelni a csigasorban lévő csigák számát? Végtelen sok mozgócsiga esetén az F erő egy határértékhez tart! Például =0,9 esetén a teheremeléshez szükséges kötélerő a súly 11%-ához tart!

Meddig érdemes növelni a csigasorban lévő csigák számát? Végtelen sok mozgócsiga esetén a vF sebesség a végtelenhez, a teheremelés sebessége pedig zérushoz tart!

Meddig érdemes növelni a csigasorban lévő csigák számát? Végtelen sok mozgócsiga esetén a hatásfok egyre romlik, zérushoz tart! Például =0,9 és n=6 (három mozgócsiga) esetén ez 0,7, n=10 (öt mozgócsiga) esetén 0,59!

Ellenőrző kérdések (1) Hogyan valósul meg a teljesítmény-átvitel dörzshajtás alkalmazása esetén? Mi az áttétel? Mit értünk egy dörzshajtás esetén szlip alatt? Mi a veszteség forrása a súrlódó hajtásoknál? Miért? Igazolja, hogy a súrlódó hajtás hatásfoka és a szlip közötti összefüggést? Van-e hatással a szlip a súrlódó hajtás áttételére? Miért? Mit kell érteni egy szíj- vagy kötélhajtás esetén laza és feszes ág alatt? Milyen előnyös tulajdonságai vannak a dörzshajtásoknak?

Ellenőrző kérdések (2) Milyen kedvezőtlen tulajdonságai vannak a dörzshajtásoknak? Mik a jellemzői a kényszerkapcsolaton alapuló hajtásoknak? Mi a veszteség forrása a kényszerkapcsolaton alapuló hajtások esetén? Milyen előnyös tulajdonságai vannak a kényszerhajtásoknak? Milyen kedvezőtlen tulajdonságai vannak a kényszerhajtásoknak? Mit értünk egy csigasor áttételén? Milyen kinematikai törvényei vannak az egyszerű csigasornak? Mi a veszteség forrása egy csigasor esetében?

Ellenőrző kérdések (3) Mi a veszteség forrása egy csigasor esetében? Hogyan értelmezhető a csigasor hatásfoka és hogyan határozható meg? Mi az oka annak, hogy a gyakorlatban 2-3 mozgócsigánál többet csak ritkán alkalmaznak egy csigasorban?